Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Wurzeln unserer Ernährung

27.01.2010
Tübinger Max-Planck-Forscher erklären, wie die Wurzelbildung in Pflanzen gesteuert wird

Die Wurzeln sind die am meisten unterschätzten Teile einer Pflanze, obwohl sie über die Wasser- und Nährstoffaufnahme das Wachstum und die spätere Blüte überhaupt erst ermöglichen.

In einer Welt, in der sich einerseits die Verfügbarkeit von Wasser im Zuge des Klimawandels ständig ändert und andererseits die menschliche Bevölkerung rasant zunimmt, ist es von entscheidender Bedeutung zu verstehen, wie die Wurzelentwicklung bei Pflanzen gesteuert wird. Wissenschaftler am Max-Planck-Institut für Entwicklungsbiologie in Tübingen haben nun herausgefunden, dass das Pflanzenhormon Auxin in Kombination mit einer erhöhten Zellzyklusaktivität zu einem verstärkten Wurzelwachstum bei der Ackerschmalwand (Arabidopsis thaliana) führt. Zudem haben sie entdeckt, dass zwei Proteine, die die Embryoentwicklung steuern, ebenfalls eine Rolle bei der Verzweigung der Wurzeln spielen. Diese Ergebnisse könnten genutzt werden, um Pflanzen zu züchten, die trotz Nährstoff- und Wasserarmut schnell wachsen und hohe Erträge liefern. (PNAS, 25. - 29. Januar 2010)

Bereits vor etwa zweihundert Jahren prophezeite der britische Ökonom Thomas Robert Malthus, dass eine kontinuierlich wachsende Weltbevölkerung früher oder später mit Hungersnöten, Krankheiten und einer erhöhten Todesrate konfrontiert werden wird. Heute stehen wir vor der Herausforderung, ausreichend Nahrung für eine ständig wachsende Weltbevölkerung bereitzustellen. Dies wird eine Erhöhung der Nahrungsmittelproduktion erfordern, welche die der letzten Jahrzehnte übersteigt. Um das zu erreichen, benötigen wir eine neue grüne Revolution: Pflanzen, die auf nährstoffarmen und trockenen Böden wachsen und dennoch hohe Erträge liefern.

Bei Pflanzen denkt man normalerweise zunächst an Blätter, bunte Blüten und mehr oder weniger schmackhafte Früchte, jedoch nur selten an die unter der Erde verstecken Wurzeln. Der das Leben oberhalb des Erdbodens überhaupt erst ermöglichende Pflanzenteil, das Wurzelsystem, besteht aus einer Hauptwurzel von der viele Seitenwurzeln "abzweigen". Ohne Wurzeln könnten die meisten Pflanzen weder Wasser noch Nährstoffe aufnehmen noch sich im Boden verankern oder mit bestimten symbiotischen Organismen interagieren.

Auf frühere Beobachtungen aufbauend, beschrieben Wissenschaftler aus der Abteilung von Gerd Jürgens am Tübinger Max-Planck-Institut für Entwicklungsbiologie zusammen mit Kollegen aus Belgien, dass die Kombination aus einer erhöhten Zellzyklusaktivität und dem Pflanzenhormon Auxin, die Ausbildung von Seitenwurzeln bei der Ackerschmalwand Arabidopsis thaliana fördert. Des Weiteren haben sie nachgewiesen, dass zwei Proteine, welche ausschlaggebend für die Embryoentwicklung sind, ebenfalls eine Rolle bei der "Verzweigung" der Wurzeln spielen. Zum ersten Mal konnte gezeigt werden, dass die Reaktion auf das Pflanzenhormon Auxin in einzelnen, aufeinanderfolgenden Schritten stattfindet.

"Dieses Wissen über ein verbessertes und verstärktes Wurzelsystem ist ein wichtiger Schritt, um die Ernährung der Weltbevölkerung zu sichern. Es hilft die Ernte zu steigern und stärkt die Rolle der Pflanze als Energielieferant", sagt Ive De Smet. "Da Wasser, Stickstoff und Phosphor oft nur begrenzt vorhanden sind, ermöglicht ein Wurzelsystem, das Nährstoffe effektiver aufnehmen und speichern kann, einen reduzierten Düngemitteleinsatz auf minderwertigen Böden", fügt der Biologe hinzu.

Originalveröffentlichung
Ive De Smet, Steffen Lau, Ute Voß, Steffen Vanneste, René Benjamins, Eike H. Rademacher, Alexandra Schlereth, Bert De Rybel, Valya Vassileva, Wim Grunewald, Mirande Naudts, Mitchell P. Levesque, Jasmin S. Ehrismann, Dirk Inzé, Christian Luschnig, Philip N. Benfey, Dolf Weijers, Marc C. E. Van Montagu, Malcolm J. Bennett, Gerd Jürgens, Tom Beeckmann: Bimodular auxin response controls organogenesis in Arabidopsis. PNAS Early Edition, January 25 - 29, 2010, www.pnas.org/cgi/doi/10.1073/pnas.0915001107
Ansprechpartner
Dr. Ive De Smet
Tel: 07071 601-1301
E-Mail: ive.desmet@tuebingen.mpg.de
Dr. Susanne Diederich (Presse und Öffentlichkeitsarbeit)
Tel: +49 7071 601-333
E-Mail: presse@tuebingen.mpg.de
Das Max-Planck-Institut für Entwicklungsbiologie betreibt Grundlagenforschung auf den Gebieten der Biochemie, Molekularbiologie, Genetik sowie Zell- und Evolutionsbiologie. Es beschäftigt rund 325 Mitarbeiterinnen und Mitarbeiter und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für Entwicklungsbiologie ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Dr. Susanne Diederich | idw
Weitere Informationen:
http://tuebingen.mpg.de
http://tuebingen.mpg.de/startseite/detail/die-wurzeln-unserer-ernaehrung.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Darmbakterien könnten Entstehung von Multipler Sklerose beeinflussen
12.11.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

nachricht KI-gesteuerte Klassifizierung einzelner Blutzellen: Neue Methode unterstützt Ärzte bei der Leukämiediagnostik
12.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Im Focus: Göttinger Chemiker weisen kleinstmögliche Eiskristalle nach

Temperaturabhängig gefriert Wasser zu Eis und umgekehrt. Dieser Vorgang, in der Wissenschaft als Phasenübergang bezeichnet, ist im Alltag gut bekannt. Um aber ein stabiles Gitter für Eiskristalle zu erreichen, ist eine Mindestanzahl an Molekülen nötig, ansonsten ist das Konstrukt instabil. Bisher konnte dieser Wert nur grob geschätzt werden. Einem deutsch-amerikanischen Forschungsteam unter Leitung des Chemikers Prof. Dr. Thomas Zeuch vom Institut für Physikalische Chemie der Universität Göttingen ist es nun gelungen, die Größe kleinstmöglicher Eiskristalle genau zu bestimmen. Die Forschungsergebnisse sind in der Fachzeitschrift Proceedings of the National Academy of Science erschienen.

Knapp 100 Wassermoleküle sind nötig, um einen Eiskristall in seiner kleinstmöglichen Ausprägung zu formen. Nachweisen konnten die Wissenschaftler zudem, dass...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Selbstorganisation weicher Materie im Detail verstehen

12.11.2019 | Physik Astronomie

Magnetisches Tuning auf der Nanoskala

12.11.2019 | Physik Astronomie

»KaSiLi«: Bessere Batterien für Elektroautos »Made in Germany«

12.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics