Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler entwickeln Raumtemperatur-Maser zur Übertragung schwacher Signale

22.03.2018

Die Raumsonde Voyager 2 hat sich um kaum vorstellbare 17 Milliarden Kilometer von der Erde entfernt und sendet weiterhin Signale an die Bodenstation. Möglich macht dies die Maser-Technologie, die ähnlich dem Laser kohärente Wellen erzeugt und damit schwache Signale rauschfrei verstärkt. Für die Kommunikation auf der Erde wird diese Technologie bisher nur selten verwendet, weil sie nur bei tiefen Temperaturen funktioniert. Ein Forscherteam am London Centre for Nanotechnology und der Universität des Saarlandes hat jetzt jedoch einen Maser entwickelt, der auch bei Raumtemperaturen eingesetzt werden kann. Ihre Entwicklung ist der aktuelle Leitartikel des renommierten Fachjournals „Nature“.

Die Abkürzung „Maser“ steht für "microwave amplification by stimulated emission of radiation", also einer Mikrowellenverstärkung, die durch eine stimulierte Emission von Strahlung erzeugt wird. Die Physik hinter dem Maser ähnelt im Wesentlichen der des Lasers, dessen Name für „light amplification by stimulated emission of radiation“ steht. Beide erzeugen kohärente elektromagnetische Strahlung bei einer einzigen Frequenz.


Um eine Maserwirkung zu erzielen, wurde ein Diamant in einem Saphirring platziert und mit grünem Licht eines Lasers bestrahlt. Der Diamant erscheint aufgrund der Fluoreszenz nach Anregung rot.

Jonathan Breeze


Diamant im Saphirring

Jonathan Breeze

„Bisher werden Maser vor allem für die Kommunikation im Weltraum eingesetzt, um etwa den Funkkontakt zur Voyager-Raumsonde aufrecht zu erhalten. Denn Maser können sehr schwache Signale rauschfrei verstärken. Das macht sie auch für künftige Kommunikationstechnologien auf der Erde interessant“, sagt Christopher Kay, Professor für Physikalische Chemie und Didaktik der Chemie der Universität des Saarlandes.

Nachteil der Maser-Technologie war bisher, dass sie sehr tiefe Temperaturen benötigte, die nur durch den Einsatz von flüssigem Helium zu erreichen waren. Gemeinsam mit Forscherkollegen am London Centre for Nanotechnology hat Christopher Kay jetzt einen Maser entwickelt, der unter normalen Raumtemperaturen betrieben werden kann. Die Physiker verwenden dafür einen Saphir-Resonator, der in einem Magnetfeld platziert wird, um die Mikrowellenstrahlung phasenstabil zu verstärken.

Diese Strahlung wird erzeugt, indem Stickstoff-Leerstellen im Diamanten optisch angeregt werden. Im Gegensatz zu reinen Diamanten, die nur Kohlenstoffatome enthalten und daher farblos sind, wird in dem hier verwendeten Diamanten eine geringe Anzahl von Kohlenstoffatomen durch ein Stickstoffatom ersetzt. Die Stelle neben dem Stickstoffatom, die normalerweise ein Kohlenstoffatom enthält, ist leer.

„Dieser Defekt wird als NV-Center (von Nitrogen Vacancy) bezeichnet und gibt dem Diamanten eine violette Farbe. Er weist eine Vielzahl bemerkenswerter Quanteneigenschaften auf und ist daher für die Entwicklung neuer Technologien, vor allem für Anwendungen im Nanobereich interessant“, erläutert Christopher Kay.

Maser können zum Beispiel für präzisere Messungen bei Untersuchungen im Weltraum oder in der Nanotechnologie eingesetzt werden, was unter dem Begriff der Nanometrologie zusammengefasst wird. „Wir gehen zudem davon aus, dass überall dort, wo Signale mit geringer Intensität über weite Distanzen empfangen und rauschfrei verstärkt werden sollen, der Maser neue Möglichkeiten eröffnet“, so Kay.

„In der wissenschaftlichen Community war bereits bekannt, dass man Diamanten mit NV-Centren als Grundlage für einen Maser verwenden kann. Der Schwerpunkt unserer Arbeiten lag darin, einen Diamanten in einen Saphir-Resonator zu platzieren", erklärt der leitende Autor der Nature-Publikation, der promovierte Physiker Jonathan Breeze vom Imperial College in London. Professor Christopher Kay ergänzt:

"Ein spannender Aspekt dieser Technologie ist, dass die Ausgangsfrequenz einfach durch Änderung des angelegten Magnetfelds eingestellt werden kann. Das aktuelle Gerät arbeitet mit einer Frequenz von neun Gigahertz. Zum Vergleich: Mobiltelefone arbeiten im Zwei-Gigahertz-Bereich. Mit handelsüblichen Magnettechnologien könnten mit unserem Raumtemperatur-Maser Frequenzen bis zu 200 Gigahertz erreicht werden."

Da Maser optische Photonen verwenden, um Mikrowellenphotonen zu erzeugen, erwarten die Forscher, dass ihre Arbeit auch neue Wege auf dem Gebiet der Diamant-Quantentechnologie eröffnen wird. Die Forschungsarbeit wurde vom UK Engineering and Physical Sciences Research Council sowie dem Henry-Royce-Institut unterstützt.

Originalpublikation in der aktuellen Ausgabe von “Nature”:
Continuous-wave room-temperature diamond maser: www.nature.com/articles/nature25970
(doi:10.1038/nature25970)

Pressefotos unter: www.uni-saarland.de/pressefotos

Kontakt:
Prof. Dr. Christopher Kay
Physikalische Chemie und Didaktik der Chemie
Tel.: 0681 302-2213
E-Mail: christopher.kay@uni-saarland.de

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610).

Weitere Informationen:

http://www.nature.com/articles/nature25970

Friederike Meyer zu Tittingdorf | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diagnostik für alle
14.10.2019 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Inaktiver Rezeptor macht Krebs-Immuntherapien wirkungslos
14.10.2019 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

10. Weltkonferenz der Ecosystem Services Partnership an der Leibniz Universität Hannover

14.10.2019 | Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Technologiemodul senkt Ausschussrate von Mikrolinsen auf ein Minimum

14.10.2019 | Informationstechnologie

Diagnostik für alle

14.10.2019 | Biowissenschaften Chemie

Bayreuther Forscher entdecken stabiles hochenergetisches Material

14.10.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics