Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler entdecken, wie fehlgeleitete Kommunikation zwischen Zellen zu Leukämie führt

07.02.2020

Wie vermitteln Botenstoffe die Entwicklung neuer Blutzellen und wie geraten diese Prozesse bei Leukämie-Erkrankungen außer Kontrolle? In Kooperation mit Wissenschaftlern aus Großbritannien, Finnland und den USA konnte der Biophysiker Prof. Dr. Jacob Piehler vom Fachbereich Biologie/ Chemie der Universität Osnabrück den zugrundeliegenden molekularen Mechanismus jetzt aufklären. Die Ergebnisse dieses Forschungsprojekts stellen sie in einem Artikel in der renommierten Fachzeitschrift „Science“ vor (https://science.sciencemag.org/cgi/doi/10.1126/science.aaw3242), der am 7. Februar erschienen ist.

Zum Hintergrund: Bei einem erwachsenen Menschen werden täglich Milliarden reifer Blutzellen gebildet. Die Entwicklung und Vermehrung der verschiedenen Zelltypen des Bluts aus blutbildenden Stammzellen im Knochenmark wird durch Botenstoffe der Familie der Zytokine kontrolliert. Diese binden an Rezeptoren auf der Oberfläche von Vorläufer-Zellen.


Wissenschaftler aus Deutschland, Großbritannien, Finnland und den USA entdecken, wie fehlgeleitete Kommunikation zwischen Zellen zu Leukämie führt.

Foto: University of Helsinki/ Ilpo Vattulainen undJoni Vuorio

Dadurch werden Signalkaskaden aktiviert, die sowohl Wachstum und Zellteilung als auch die Ausdifferenzierung in verschieden Zelltypen steigern. Verschiedene Leukämie-Erkrankungen werden mit genetischen Mutationen in Verbindung gebracht, bei denen diese Signalwege auch ohne Botenstoffe, also unkontrolliert, aktiviert sind.

Bislang war es unklar, wie einzelne Mutationen diese Signalaktivierung auf molekularer Ebene auslösen und damit zu diesen schwerwiegenden Erkrankungen des blutbildenden Systems führen.

Erstautor Dr. Stephan Wilmes, der das Projekt als Postdoktorand an der Universität Osnabrück begonnen hatte, berichtet: „Es war wirklich inspirierend, diese spannende biomedizinische Fragestellung mit neuen biophysikalischen Methoden anzugehen, die ich hier während meiner Doktorarbeit entwickelt hatte.“

„Eine besondere Herausforderung dabei war es, die verschiedenen Forschungsansätze der beteiligten Arbeitsgruppen zu koordinieren“, so Maximillian Hafer, der inzwischen die Projektverantwortung übernommen hat.

Durch Einzelmolekülmikroskopie an lebenden Zellen konnten die Forscher jetzt erstmals eindeutig nachweisen, dass die Rezeptoren durch die Botenstoffe zur Paaren verbunden werden. Bislang wurde angenommen, dass die Rezeptoren auch ohne Botenstoff bereits als inaktive Paare vorliegen.

Aus ihren neuen Beobachtungen an höchstauflösenden Fluoreszenzmikroskopen schlossen die Forscher hingegen, dass die Paarbildung selbst der grundlegende Schalter zur Aktivierung der Signalvermittlung in der Zelle ist.
„Durch die direkte mikroskopische Visualisierung einzelner Rezeptoren unter physiologischen Bedingungen konnten wir eine Kontroverse klären, die dieses Forschungsgebiet seit mehr als 20 Jahren beschäftigt“, erklärt Prof. Dr. Jacob Piehler.

Durch Kombination mit biomedizinischen Untersuchungen an den Universitäten York und Dundee fanden die Forscher heraus, dass viele krankheitsrelevante Mutationen bereits ohne Botenstoff zur Paarbildung bestimmter Rezeptoren führten. „Diese Beobachtungen brachten uns auf die Spur eines bislang unbekannten Mechanismus, wie einzelne Mutationen an diesem Rezeptor zu Leukämie-Erkrankungen führen“, erläutert Prof. Ian Hitchcock von der Universität York.

Kooperationspartner an der Universität Helsinki nutzten diese Ergebnisse, um über Simulationsrechnungen und molekulare Modellierung ein vollständiges Strukturmodell auf atomarer Skala zu entwickeln, das die unterschiedlichen Wirkungsweisen verschiedener Mutationen erklären konnte. „Unsere Strukturmodelle zeigten außerdem überraschende Effekte in Hinblick auf die Ausrichtung der aktiven Rezeptorpaare an der Zellmembran. Diese Vorhersagen konnten anschließend experimentell bestätigt werden“, erklärt Prof. Ilpo Vattulainen von der Universität Helsinki.

Diese grundlegenden Einsichten in die Funktionsweise von Rezeptoren ermöglichen nicht nur völlig neue und wesentlich gezieltere Strategien für die Bekämpfung von Leukämie-Erkrankungen. Darüber hinaus vermuten die Forscher, dass sich eine ganze Reihe von entzündlichen und allergischen Erkrankungen ebenfalls auf ähnliche Mechanismen zurückführen lassen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jacob Piehler, Universität Osnabrück
Fachbereich Biologie/ Chemie & Center of Cellular Nanoanalytics (CellNanOs)
Barbarastraße 11, 49076 Osnabrück
Tel.: +49 541 969-2800, Mobil: 0160 7475486
E-Mail: piehler@uos.de

Originalpublikation:

Science https://science.sciencemag.org/cgi/doi/10.1126/science.aaw3242

Dr. Utz Lederbogen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://www.uni-osnabrueck.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Komplexe biologische Systeme können nicht ohne Chaos existieren
17.02.2020 | Universität Rostock

nachricht Neue Hauptdarsteller im Meeresboden: Eine bislang kaum beachtete Bakteriengruppe im Rampenlicht
17.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg

17.02.2020 | Geowissenschaften

Lichtpulse bewegen Spins von Atom zu Atom

17.02.2020 | Physik Astronomie

Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen

17.02.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics