Wirtswechsel verändert Giftcocktail

Der Blattkäfer Chrysomela lapponica<br>MPI für chemische Ökologie/Kirsch<br>

Blattkäfer begeistern uns wegen ihrer Formenvielfalt und Farbenpracht. Ihre Larven aber sind gefährliche Pflanzenschädlinge. Käfer der Art Chrysomela lapponica befallen zwei verschiedene Baumarten: Weiden und Birken. Um sich vor feindlichen Angriffen zu schützen, produzieren die Käferlarven giftige Buttersäureester oder Salicylaldehyd, deren Vorstufen sie mit der Blattnahrung aufnehmen.

Wissenschaftler des Max-Planck-Instituts für chemische Ökologie in Jena haben jetzt herausgefunden, dass sich in den auf Birken spezialisierten Käferlarven eine wesentliche Veränderung in ihrem Genom herausgebildet hat: Das Salicylaldehyd produzierende Enzym Salicyl-Alkohol-Oxidase (SAO) ist in den Birkenpopulationen im Gegensatz zu Weidenbewohnern nicht mehr aktiv. Die Birkenbewohner sparen sich dadurch die aufwändige Produktion des Enzyms, das sie nicht mehr benötigen, weil dessen Substrat Salicylalkohol in Weiden-, aber nicht in Birkenblättern vorkommt. Vor allem aber verraten sie sich durch den Wegfall des Salicylaldehyds im Gegensatz zu ihren auf Weiden lebenden Artgenossen nicht mehr ihren Feinden, die anhand der duftenden Substanz Blattkäferlarven aufspüren können. (PNAS Early Edition, DOI 10.1073/pnas.1013846108)

Wehrdrüsen und Giftcocktails

Käferlarven sind Teil einer Nahrungskette. Sie werden attackiert von räuberischen Insekten und Parasiten, beispielsweise Schwebfliegen und Wanzen, und können zudem von Bakterien und Pilzen befallen werden. Um sich dagegen zu schützen, haben einige Blattkäferlarven äußerlich wie auch im Stoffwechsel einen interessanten Mechanismus entwickelt: Bei Gefahr stülpen sie blasenartig den Inhalt von Wehrdrüsen aus (s. Abbildung, auch filmisch dargestellt und abrufbar unter http://www.ice.mpg.de/ext/735.html). Im Wehrsekret wiederum befinden sich Giftstoffe, die die Tiere aus chemischen Vorstufen ihrer pflanzlichen Nahrung produzieren. Mit Hilfe eines ausgeklügelten molekularen Transportsystems werden die pflanzlichen Giftvorstufen vom Darm bis in die Wehrdrüsen geschleust. In der Drüse sind dann nur noch wenige Schritte notwendig, um das eigentliche Gift zu erzeugen.

An die Wirtspflanze gebunden

Die meisten Blattkäferarten attackieren nur eine einzige Pflanzengattung, um sich zu ernähren und fortzupflanzen. Die Verwertung spezieller pflanzlicher Moleküle als Substrate für giftproduzierende Enzyme ist einerseits für die Larven wirtschaftlich, andererseits entsteht dadurch aber auch eine große Abhängigkeit der Blattkäferart von der jeweiligen Wirtspflanze und ihrer Inhaltsstoffe. Weiden, die zur Familie der Salicaceae gehören, enthalten in ihren Blättern bis zu 5 Prozent glycosylierten Salicylalkohol (Salicin). Birken hingegen besitzen diese Verbindung nicht. Wissenschaftler aus der Abteilung Bioorganische Chemie des Jenaer Instituts haben deshalb untersucht, wie sich Käfer der Art Chrysomela lapponica sowohl an Weiden als auch an Birken als Wirtspflanzen angepasst haben.

Dazu haben sie zuerst in einem einfachen, aber aussagekräftigen Experiment geprüft, ob der Wegfall des Salicylaldehyds bei den auf Birken lebenden Tieren lediglich auf das Fehlen der Vorstufe Salicin in dieser Baumart zurückzuführen ist. Dazu boten sie hungernden Blattkäferlarven, die sie von Birken gesammelt hatten, Weidenblätter an. „Die Tiere konnten Salicin aus Weidenblättern aufnehmen, und auch Salicylalkohol war im Wehrsekret der Tiere nachweisbar. Jedoch wurde aus dem Alkohol kein Aldehyd gebildet. Somit musste den Birkentieren das Enzym Salicyl-Alkohol-Oxidase fehlen, das diesen letzten Schritt, also die Oxidation vom Alkohol zum Aldehyd, bewerkstelligt“, so Roy Kirsch, der sich im Rahmen seiner Doktorarbeit diesem Thema widmet.

Inaktives Enzym der Birkenschädlinge durch alternatives Spleißen

Biochemische Analysen ergaben, dass das Drüsensekret von Salicylaldehyd produzierenden Weidenschädlingen das Enzym Salicyl-Alkohol-Oxidase in auffallend großer Menge enthält. Die Forscher bezeichneten es als SAO-W (W: Weide). Mithilfe entsprechender DNA-Sequenzdaten isolierten und charakterisierten sie dann das SAO-B (B: Birke) kodierende Gen aus Birkenschädlingen. Sie stellten fest, dass die Aminosäuresequenzen der beiden Enyzme zu 97 Prozent identisch sind. Allerdings ist die SAO-B durch den Wegfall von 27 Aminosäuren am Anfang der Polypeptidkette inaktiv geworden, was nach heterologer Expression in einer Insektenzellkultur und anschließenden Funktionstests bestätigt werden konnte. Weitere Untersuchungen an den Wehrdrüsen der Birkenkonsumenten ergaben, dass die Boten-RNA des SAO-B Gens in 1000fach geringerer Menge im Vergleich zu den Weidenschädlingen vorhanden war und dass das Protein und seine Enzymaktivität sich unterhalb der Nachweisgrenzen befanden. Der Wegfall der Enzymaktivität ist durch eine Mutation im SAO-B Gen bedingt, die sich im Bereich des zweiten Exon-Intron Übergangs befindet. Das wiederum ruft eine veränderte Prozessierung der Boten-RNA, ein so genanntes alternatives Spleißen, hervor, was den Wegfall der 27 Aminosäuren im SAO-B Enzym hervorruft.

Die Forscher schließen daraus, dass Chrysomela lapponica ursprünglich ausschließlich Weiden als Wirte genutzt hat und von diesen zu Birken gewechselt ist. „Es ist noch unklar, ob die Genmutation den Wirtswechsel von Weide auf Birke überhaupt ermöglicht hat oder ob sie erst nach erfolgtem Wirtswechsel auf die Birke im Verlauf der Evolution adaptiert wurde“, so Wilhelm Boland, Leiter der Studie. Die genetische Analyse weiterer SAO Gene aus Blattkäferarten der Gattung Chrysomela sollte Aufschluss darüber geben können. [JWK]

Originalveröffentlichung
Kirsch, R., Vogel, H., Muck, A., Reichwald, K., Pasteels, J. M., Boland, W.
Host plant shifts affect a major defense enzyme in Chrysomela lapponica.
Proceedings of the National Academy of Sciences USA, Early Edition, DOI 10.1073/pnas.1013846108.
Weitere Informationen:
Prof. Dr. Wilhelm Boland, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena. Tel.: +49 (0)3641- 57-1200, -1201; boland@ice.mpg.de
Bildanfragen:
Download: http://www.ice.mpg.de/ext/735.html
oder direkt:
Angela Overmeyer, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena. Tel.: +49 (0)3641- 57 2110; overmeyer@ice.mpg.de

Media Contact

Dr. Jan-Wolfhard Kellmann Max-Planck-Institut

Weitere Informationen:

http://www.ice.mpg.de/ext/735.html

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer