Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wiener Wissenschaftler entschlüsseln die Gehirnaktivität des Fadenwurms

16.10.2015

Manuel Zimmer und sein Team am Forschungsinstitut für Molekulare Pathologie (IMP) liefern neue Erkenntnisse zur gehirnweiten Aktivität der Nervenzellen des Fadenswurms Caenorhabditis elegans. Die Forscher konnten zeigen, dass die über das gesamte Gehirn verteilten und als Netzwerk organisierten Nervenzellen (Neuronen) zwar verschiedene Funktionen ausführen, aber im Kollektiv aktiv sind. Aus der aufeinander abgestimmten Aktivität einzelner Neuronengruppen konnten eindeutig die Verhaltensabsichten des Tieres abgelesen werden. Das Wissenschaftsjournal Cell präsentiert die Ergebnisse der Studie in der kommenden Ausgabe.

Die Funktionsweise des Gehirns ist eines der spannendsten Rätsel der aktuellen Forschung. Eine der größten Herausforderungen stellt dabei die Komplexität von Nervensystemen dar. So besteht zum Beispiel ein Mäusegehirn aus Millionen von Neuronen, die auf komplizierte Art miteinander verknüpft sind.


Kopf eines Fadenwurms mit genetisch modifizierten Nervenzellen, die unter dem Mikroskop leuchten. Im Hintergrund Aktivitätsmessungen von Nervenzellen, aus denen Verhaltensabsichten abgeleitet werden

IMP

Im Gegensatz dazu besitzt der etwa ein Millimeter lange Fadenwurm ein Nervensystem, das exakt 302 Nervenzellen umfasst. Aufgrund seiner einfachen Handhabung im Labor und seiner entwicklungsbiologischen Eigenschaften ist er ein wichtiger Modellorganismus für die Grundlagenforschung.

Seit fast 30 Jahren weiß man, wie die einzelnen Nervenzellen im Gehirn des Wurms miteinander verknüpft sind und kennt somit seine neuronalen Schaltkreise, die ähnlich komplex aufgebaut sind wie bei größeren Organismen.

Zusammenspiel von Neuronengruppen im Netzwerkverband

Bisher konzentrierte sich die Forschung auf die Funktionen einzelner oder weniger Nervenzellen und deren Zusammenwirken, um Verhaltensweisen wie Bewegungen zu erklären. Beim Wurm wusste man bereits, wie einzelne Neuronen als isolierte Untereinheiten im Netzwerk funktionieren, jedoch nicht, wie sich Neuronengruppen untereinander koordinieren.

Hier setzte Manuel Zimmer, Gruppenleiter am IMP, mit seinem Team an und bediente sich richtungsweisender Technologien: Er verwendete einerseits moderne 3D-Mikroskopiemethoden zur schnellen, gleichzeitigen Messung verschiedener Gehirnareale. Andererseits arbeitete er für seine Versuche mit Würmern, die durch Einbau eines Kalziumsensors bei Aktivität leuchten.

„Diese Kombination war für uns genial, denn sie ermöglichte eine gehirnweite Einzelzell-Auflösung unserer Aufnahmen in Echtzeit“, erklärt Zimmer die Vorteile seines Ansatzes.

Würmer beim Denken beobachten

Zimmer und sein Team testeten die Reaktion der Tiere auf Futterentzug und setzten sie dann bestimmten Reizen von außen aus. Unter dem Mikroskop bot sich den Forschern ein faszinierendes Bild: „Über das gesamte Gehirn verteilt sahen wir, dass ein Großteil der Neuronen stetig aktiv sind und sich koordinieren. Sie agieren wie in einem Ensemble“, erklärt Postdoktorand Saul Kato, gemeinsam mit dem Doktoranden Harris Kaplan und der Doktorandin Tina Schrödel Teil des Teams, das die Arbeit maßgeblich vorantrieb. Die Tiere konnten sich bei diesen Versuchen nicht bewegen, ihre Reaktionen waren somit reine Gedankenspiele.

Mit einer anderen Mikroskopiertechnik, entwickelt für frei bewegliche Würmer, konnten die Forscher herausfinden, welche Neuronen die Kommandos zur Ausführung einzelner Verhaltensabläufe erteilen. Zwischen bestimmten Netzwerkaktivitäten und dem Impuls für Bewegungen sahen sie eindeutige Zusammenhänge und konnten den Tieren somit regelrecht beim Denken zuschauen. Nicht nur kurze Bewegungen, sondern auch wie diese im Gehirn wie beispielsweise bei der Futtersuche zu längeren Verhaltensstrategien zusammengefügt werden, konnten sie so analysieren.

„Das ist bisher noch niemandem gelungen“, so Zimmer. Ähnliche neurale Aktivitätsmuster wurden zwar auch bei höher organisierten Tieren entdeckt, doch die Forscher konnten immer nur einen kleinen Teil aller Nervenzellen in Unterbereichen des Gehirns untersuchen. Zimmer und seine Mitarbeiter sind überzeugt, dass im Fadenwurm – obwohl nur sehr entfernt verwandt mit den Säugetieren – grundlegende Prinzipen der Gehirnfunktion präzise beschrieben werden können.

Untersuchung der molekularen Mechanismen

Noch sind in der Neurobiologie viele spannende Fragen unbeantwortet. Etwa die der Entscheidungsfindung oder ob das Gehirn formale Rechenschritte durchführt und damit einem Computer ähnelt. Zimmer möchte in einem nächsten Schritt erst einmal die molekularen Mechanismen analysieren, die den von ihm untersuchten Prozessen zugrunde liegen. „Interessant wäre es natürlich auch, langanhaltende Zustände im Gehirn wie Schlafen und Wachsein genauer zu untersuchen“, so der Forscher.


Originalpublikation
Kato et al., Global Brain Dynamics Embed the Motor Command Sequence of Caenorhabditis elegans, Cell (2015), http://dx.doi.org/10.1016/j.cell.2015.09.034

Illustration
Eine Illustration zum unentgeltlichen Abdruck im Zusammenhang mit dieser Aussendung finden Sie unter: www.imp.ac.at/pressefoto-brainactivity

Legende
Das Bild zeigt den Kopf eines Fadenwurms, dessen Nervenzellen genetisch modifiziert wurden, sodass sie unter dem Mikroskop leuchten. Im Hintergrund sind typische Aktivitätsmessungen einiger dieser Nervenzellen eingeblendet aus denen die Wiener Wissenschaftler die Verhaltensabsichten des Wurms entziffern konnten.

Über Manuel Zimmer
Manuel Zimmer studierte Biochemie in Berlin. Nach einem kurzen Forschungsaufenthalt an der Universität New York promovierte er am EMBL-Heidelberg und dem Max-Planck-Institut für Neurobiologie bei München. Nach einer Postdoc Forschungstätigkeit an der Universität von San Francisco und der Rockefeller Universität in New York wurde er 2010 Gruppenleiter am Forschungsinstitut für Molekulare Pathologie in Wien.

Über das IMP
Das Forschungsinstitut für Molekulare Pathologie betreibt in Wien biomedizinische Grundlagenforschung. Hauptsponsor ist der internationale Unternehmensverband Boehringer Ingelheim. Mehr als 200 Forscherinnen und Forscher aus über 30 Nationen widmen sich am IMP der Aufklärung grundlegender molekularer und zellulärer Vorgänge, um komplexe biologische Phänomene im Detail zu verstehen. Die bearbeiteten Themen umfassen die Gebiete der Zell- und Molekularbiologie, Neurobiologie, Krankheitsentstehung sowie Bioinformatik. Das IMP ist Gründungsmitglied des Vienna Biocenter, Österreichs Leuchtturm im internationalen Konzert molekularbiologischer Top-Forschung.

Kontakt
Dr. Heidemarie Hurtl
IMP - Forschungsinstitut für Molekulare Pathologie
Communications
T +43-1-79730-3625
hurtl@imp.ac.at

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.imp.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Vom Rezeptoraufbau zu neuen Osteoporose-Medikamenten
20.11.2018 | Universität Zürich

nachricht „Schneller nach oben“ – Pflanzen nutzen spezialisierte Transportwege zur Stickstoffversorgung
20.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kosmische Schlange

20.11.2018 | Physik Astronomie

Gestreift und doch fast unsichtbar – dem bedrohten Annamitischen Streifenkaninchen auf der Spur

20.11.2018 | Ökologie Umwelt- Naturschutz

Vom Rezeptoraufbau zu neuen Osteoporose-Medikamenten

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics