Wie Zellen fest zusammenhalten

Schnappschüsse von der Bindung eines Riesenvesikels auf einer ebenen Modellmembran. Dunkle Pixel kennzeichnen die Kontaktpunkte zwischen den Membranen. Sie werden mit der Zeit zahlreicher und größer. (Bild: Susanne Fenz)

Für viele Zellen des Körpers ist es enorm wichtig, dass sie kontrolliert zusammenhalten und sich kontrolliert trennen. Das ist etwa dann der Fall, wenn sich in einem Embryo die Organe bilden. Oder wenn es bei der Wundheilung darum geht, offene Stellen in der Haut zu versiegeln.

Wie bedeutsam enge Zell-Zell-Kontakte sind, zeigt sich vor allem dann, wenn sie versagen. Wenn sie zum Beispiel in einem Tumor locker werden und sich lösen. Der Zellverband des Tumors neigt in diesem Fall dazu, sich aufzulösen und Metastasen zu bilden.

Cadherine als wichtige Akteure

Bei den genannten Beispielen kommt den Cadherin-Proteinen eine tragende Rolle zu. Sie sitzen in den Zellmembranen und können sich untereinander, aber auch mit den Cadherinen anderer Zellen fest verbinden. Eine Bindung zwischen zwei Cadherin-Molekülen zweier Zellen setzt dabei quasi den Startschuss für die Ausbildung von flächigen Kontaktzonen.

Der Prozess des Bildens und Lösens von Kontakten ist offenbar viel stärker von rein physikalischen Effekten abhängig als bisher gedacht. Das zeigen die Computersimulationen und Experimente, die Dr. Susanne Fenz vom Biozentrum der Universität Würzburg mit Kollegen aus Jülich, Stuttgart, Erlangen und Marseille in „Nature Physics“ publiziert hat.

Modellmembranen in Kontakt gebracht

Die Biophysikerin hat Cadherin-haltige Modellmembranen miteinander in Kontakt gebracht und dann gezielt verschiedene physikalische Parameter verändert, die Einfluss auf das Fluktuationsverhalten der Membran haben, etwa die Zucker- oder die Salzkonzentration.

„Schon sehr kleine Veränderungen hatten dabei sehr große Auswirkungen auf die Entstehung und das Wachstum der Zell-Zell-Kontakte“, sagt Dr. Fenz, die am Lehrstuhl für Zell- und Entwicklungsbiologie (Zoologie I) eine Nachwuchsgruppe leitet. „Damit besteht die Möglichkeit, einen biologischen Prozess durch die Veränderung rein physikalischer Parameter zu regulieren, etwa die Temperatur oder lokale Lipidzusammensetzung der Membran.“

Inwieweit sich die Ergebnisse von den Modellmembranen auf lebende Systeme übertragen lassen, sei aber noch fraglich. „Es bleibt eine Aufgabe für die Zukunft, die Relevanz unserer Beobachtungen an lebenden Systemen zu bestätigen“, so Susanne Fenz.

Erreger der Schlafkrankheit im Blick

Die Würzburger Forscherin interessiert sich grundsätzlich für die Biophysik von Membranen. Dabei hat sie auch die Erreger der Schlafkrankheit im Blick, die Trypanosomen. Diese einzelligen Organismen sind ein Hauptforschungsobjekt von Professor Markus Engstler, der den Lehrstuhl Zoologie I leitet.

Das Besondere an der Zellmembran der Trypanosomen: Sie ist mit einem dichten Proteinmantel besetzt, der in einer Population laufend variiert wird. Diese hohe Variabilität des Proteinmantels ist ein Grund dafür, dass sich die Krankheitserreger sehr gut vor dem Immunsystem von Mensch und Tier verstecken können.

Membrane fluctuations mediate lateral interaction between cadherin bonds. Susanne F. Fenz, Timo Bihr, Daniel Schmidt, Rudolf Merkel, Udo Seifert, Kheya Sengupta & Ana-Sunčana Smith. Nature Physics, 12. Juni 2017, DOI: 10.1038/nphys4138

Kontakt
Dr. Susanne Fenz, Leiterin der Nachwuchsgruppe “Physics of the Cell”, Biozentrum der Universität Würzburg, T +49 931 31-89712, susanne.fenz@uni-wuerzburg.de

http://rdcu.be/tpWy Zur Publikation
http://www.zeb.biozentrum.uni-wuerzburg.de/people/staff_scientists/susanne_fenz/ Website von Dr. Susanne Fenz

Media Contact

Robert Emmerich Julius-Maximilians-Universität Würzburg

Weitere Informationen:

http://www.uni-wuerzburg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer