Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Zebrafische amputierte Flossen wiederherstellen

17.08.2015

Im Gegensatz zum Menschen sind Fische imstande, amputierte Körperteile vollständig wiederherzustellen. Ein prominentes Beispiel ist der Zebrabärbling, der auch als Zebrafisch bezeichnet wird. Seine Schwanzflosse regeneriert nach einer Verletzung innerhalb von drei Wochen vollständig. Wie wird die Produktion neuer Knochenzellen gesteuert, und wie gelingt es dem Zebrabärbling, dass das Skelett der wiederhergestellten Flosse wieder genauso aussieht wie das der ursprünglichen Flosse? Prof. Dr. Gerrit Begemann, Professor für Entwicklungsbiologie an der Universität Bayreuth, und seiner Doktorandin Nicola Blum ist es jetzt gelungen, wichtige Aspekte dieser Prozesse aufzuklären.

Im Gegensatz zum Menschen sind Fische imstande, amputierte Körperteile vollständig wiederherzustellen. Ein prominentes Beispiel ist der Zebrabärbling (Danio rerio), ein beliebter Aquarienzierfisch.


Das regenerierende Gewebe (Blastema) einer Zebrabärbling-Schwanzflosse nach einer Amputation.

Bild: Professur für Entwicklungsbiologie, Universität Bayreuth


Schwanzflosse eines Zebrabärblings. Li.: normale Regeneration der knöchernen Flossenstrahlen; re.: Fehlbildungen der Knochen infolge einer manipulierten Produktion des Signalproteins Sonic Hedgehog.

Bild: Professur für Entwicklungsbiologie, Universität Bayreuth

Wenn seine Schwanzflossen durch Bisswunden verletzt oder im Labor amputiert werden, können sie sich innerhalb von drei Wochen vollständig regenerieren. Zebrabärblinge – auch Zebrafische genannt – bieten sich daher als Tiermodell an, um die natürliche Regeneration von Gewebe auf zellulärer und molekularer Ebene zu untersuchen.

Die Flossen der Zebrafische bestehen aus einer Flossenhaut, die durch ein Skelett aus Flossenstrahlen Stabilität bekommt; ähnlich wie ein aufgespannter Regenschirm, der durch die metallenen Kiele Festigkeit erhält.

Die Flossenstrahlen werden von knochenbildenden Zellen, den Osteoblasten, gebildet. Damit eine amputierte Flosse wieder neu aufgebaut werden kann, muss in kurzer Zeit eine große Anzahl neuer Osteoblasten entstehen. Osteoblasten aus der Wundregion müssen daher die Bildung von Knochensubstanz zunächst aufgeben und sich "verjüngen" – oder genauer gesagt: durch „De-Differenzierung“ in ein früheres Entwicklungsstadium zurückfallen. Aus spezialisierten, reifen Zellen werden teilungsfähige Knochenvorläuferzellen.

Bisher war nur wenig darüber bekannt, wie die De-Differenzierung und die erneute Knochenbildung reguliert wird. Und auch wie es dem Zebrafisch gelingt, dass das Skelett der regenerierten Flosse wieder genauso aussieht wie das der ursprünglichen Flosse, war unklar. Prof. Dr. Gerrit Begemann, Professor für Entwicklungsbiologie an der Universität Bayreuth, und seiner Doktorandin Nicola Blum ist es jetzt gelungen, wichtige Aspekte dieser Prozesse aufzuklären.

In der Online-Ausgabe des renommierten Fachmagazins "Development" haben sie dazu zwei Studien veröffentlicht. Aus den neuen Erkenntnissen können Impulse für biomedizinische Forschungsarbeiten hervorgehen, die darauf abzielen, das Gewebe verletzter Knochen oder Organe beim Menschen wiederherzustellen.

Das Dilemma der Zellen: Zwischen Vermehrung und Spezialisierung

Für das normale Wachstum der Knochen hat Retinsäure eine wichtige Funktion. Sie regen die Osteoblasten dazu an, Knochenmaterial abzuscheiden und so ihre spezielle Funktion als differenzierte Zellen zu erfüllen. Damit die Osteoblasten diese Funktion aufgeben und sich wieder zu teilungsfähigen Knochenvorläuferzellen rückentwickeln können, sind sie folglich auf eine Umgebung angewiesen, die von Retinsäure frei ist. Doch genau diese Voraussetzung ist, wenn die Schwanzflosse amputiert ist, nicht gegeben. Denn das Gewebe unter der Wunde beginnt mit der massiven Produktion von Retinsäure, um Prozesse der Zellteilung anzuregen.

Wie gelingt es den reifen Osteoblasten, diesem Dilemma zu entkommen? Die Antwort hat Nicola Blum im Labor von Prof. Gerrit Begemann entdeckt: Nach der Verletzung der Flosse produzieren die Osteoblasten vorübergehend das Enzym Cyp26b1, das Retinsäure abbaut und inaktiviert. Unter dem Schutz dieses Enzyms kann die Entwicklungsuhr zurückgedreht werden.

Die teilungsfähigen Knochenvorläuferzellen wandern in einen Pool von Vorläuferzellen, das Blastema, ein. In diesem Gewebe vermehren sich die Vorläuferzellen und bilden neue Zellen für den Wiederaufbau der Flosse. In der Folge entsteht ein weiteres Dilemma, wie das Bayreuther Forschungsteam herausgefunden hat: Die Zellteilungen werden durch eine hohe Konzentration von Retinsäure unterstützt. Doch die Rückverwandlung in reife spezialisierte Zellen wird, wie schon zuvor die „De-Differenzierung“, durch Retinsäure blockiert.

Nicola Blum hat herausgefunden, wie dieses Dilemma innerhalb des Blastemas gelöst wird. In denjenigen Bereichen des Blastemas, in denen neue Osteoblasten wieder mit dem Aufbau des Skeletts beginnen, produzieren Bindegewebszellen den Retinsäurekiller Cyp26b1. Dadurch sinkt die Menge an Retinsäure, und Knochenvorläuferzellen sind in der Lage, erneut zu Osteoblasten zu reifen. Nur in demjenigen Bereich des Blastemas, der durch Zellteilung für Zellnachschub sorgt, bleibt die Konzentration an Retinsäure hoch. „So ist innerhalb des Blastemas für ein elegantes Gleichgewicht zwischen unterschiedlichen Regionen gesorgt, auf die sich die beiden Prozesse der Vermehrung und der Re-Differenzierung von Zellen verteilen“, erklärt Begemann.

Ein ‚Navigationssystem‘ für den Wiederaufbau des Skeletts

Wie wird die Form des Knochenskeletts wiederhergestellt, sobald sich ausreichend viele Osteoblasten neu gebildet haben? Für den korrekten Wiederaufbau der Knochen ist es erforderlich, dass sich die frisch regenerierten Osteoblasten an den richtigen Stellen anlagern, nämlich exakt in der Verlängerung der noch vorhandenen Knochenstrahlen. Genau hier müssen sie neues Knochenmaterial produzieren. Der Mechanismus, der dieses Verhalten der Osteoblasten gewährleistet, war bisher unbekannt. In einer weiteren, ebenfalls in „Development“ veröffentlichten Studie konnte er von Nicola Blum aufgeklärt werden.

Damit die Osteoblasten ‚wissen‘, wo sie sich anlagern müssen, wird in der Flossenoberhaut – auch Epidermis genannt – das Signalprotein Sonic Hedgehog produziert und ausgesendet. Die Zellen der Epidermis können dieses Protein allerdings nur dann herstellen, wenn sie frei sind von Retinsäure. Dies wird genau dort, wo Flossenstrahlen entstehen, durch das Enzym Cyp26a1 sichergestellt, das mit Cyp26b1 verwandt ist. Welche entscheidende Lotsenfunktion Sonic Hedgehog für die Osteoblasten übernimmt, konnte die Bayreuther Doktorandin zeigen, indem sie die Konzentration von Retinsäure derart manipulierte, dass das Signalprotein vom gesamten regenerierenden Gewebe ausgesendet wurde. Die Folgen waren dramatisch: Statt sich gezielt nur an der Verlängerung bestehender Flossenstrahlen anzulagern, wanderten die Osteoblasten auch in Bereiche zwischen den Strahlen ein, die normalerweise nur aus elastischer Flossenhaut besteht. Es bildeten sich Knochenzellen an völlig verkehrten Stellen, so dass im Ergebnis auch der Wiederaufbau der Skelettstruktur scheiterte.

Zugleich stellte sich in den Experimenten heraus, dass Osteoblasten ihrerseits Lotsenfunktionen für andere Zelltypen – insbesondere für Bindegewebe- und Blutgefäßzellen – haben. Auch diese Zellen müssen sich in unmittelbarer Nähe der Flossenstrahlen ansiedeln. Sie tun dies, indem sie sich an den Osteoblasten orientieren. Wenn Knochenvorläuferzellen falsche Wege einschlagen, folgen ihnen die Bindegewebe- und Blutgefäßzellen – ein weiterer Grund, weshalb die Regeneration der Skelettstruktur fehlschlägt.

„Die Neubildung des Skeletts beruht offensichtlich auf einem ‚Navigationssystem‘, das sich aus einer Kette von Lotsenfunktionen aufbaut“, fasst Begemann die neuen Erkenntnisse zusammen. “Am Beginn steht der räumlich begrenzte Abbau der Retinsäure. Dadurch wird die Produktion eines Signalproteins ermöglicht, das die knochenbildenden Zellen genau dorthin führt, wo sie benötigt werden. Die Osteoblasten ihrerseits lotsen Bindegewebe- und Blutgefäßzellen an die richtigen Stellen und koordinieren so die natürliche Regeneration der Flosse.“

Veröffentlichungen:

Nicola Blum and Gerrit Begemann, Osteoblast de- and redifferentiation is controlled by a dynamic response to retinoic acid during zebrafish fin regeneration.
Development 2015, Vol 142 / Issue 17; posted ahead of print August 7, 2015,
doi: 10.1242/dev.120204

Nicola Blum and Gerrit Begemann, Retinoic acid signaling spatially restricts osteoblasts and controls ray-interray organization during zebrafish fin regeneration.
Development 2015, Vol 142 / Issue 17; posted ahead of print August 7, 2015,
doi: 10.1242/dev.120212

Ansprechpartner:

Prof. Dr. Gerrit Begemann
Entwicklungsbiologie
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 55 2475
E-Mail: gerrit.begemann@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics