Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie wirken Nanopartikel?

11.08.2014

Wissenschaftler der FAU arbeiten an einem Sicherheits-Check für die winzigen Teilchen

Strukturen auf der Nanoebene lassen Geckos die Wände hochkrabbeln, das Wasser an Lotusblumen abperlen oder Haie zu flinken Jägern im Meer werden.


Die FAU-Forscher untersuchen unter anderem Zinkoxid-Nanopartikel – angeordnet als Stäbchen (links oben), als Kügelchen (rechts oben), als Plättchen (links unten) oder als Tetraeder (rechts unten). Je nach Form unterscheidet sich die Wirkung dieser extrem kleinen Nanoteilchen. Ein menschliches Haar ist übrigens in etwa 800 Mal so dick wie die abgebildeten Partikel.

Seit einigen Jahren haben sich Wissenschaftler daran gemacht, selbst Nanopartikel mit verblüffenden Eigenschaften zu entwickeln. Wie künstlich hergestellte Teilchen im Körper wirken, ist bislang jedoch nicht hinreichend verstanden. Ein interdisziplinäres Forscherteam der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) beschäftigt sich seit Kurzem mit genau diesen Fragen.

Unter dem Titel „EAM Nanosafe“ nehmen sich die Arbeitsgruppen von Prof. Dr. Christoph Alexiou, Sektion für Experimentelle Onkologie und Nanomedizin (SEON) in der HNO-Klinik des Universitätsklinikums Erlangen, und Prof. Dr. Simone Schmitz-Spanke, Professur für Biomarker in der Arbeitsmedizin, in den nächsten vier Jahren Nanoteilchen vor, die am Exzellenzcluster Engineering of Advanced Materials (EAM) der FAU entwickelt wurden. Das Besondere an dem FAU-Projekt: Partikel-Designer des Exzellenzcluster und Forscher, die die Wirkung auf Mensch und Umwelt untersuchen, kooperieren eng.

Zuerst werden die Wissenschaftler Methoden weiterentwickeln, mit denen Nanopartikel auf ihre Wirkung hin untersucht werden können. Denn bisher existieren keine Standardverfahren, um die winzigen Teilchen zu analysieren.

Dabei arbeiten die Forscher mit standardisierten Partikeln wie Zinkoxid, Titandioxid oder Eisenoxid, die heute bereits in Produkten wie Farben und Lacken, Kosmetika oder Medikamenten im Einsatz sind. Die Partikel sollen vorrangig aus dem Exzellenzcluster an die beiden Arbeitsgruppen geliefert werden, steril als Pulver oder gelöst in speziellen Flüssigkeiten.

Die zweite Phase des Projekts verlässt die Ebene des reinen Screenings und widmet sich der grundlegenden Frage, wie Nanopartikel wirken. Dafür synthetisieren die EAM-Forscher aus den Arbeitsgruppen von Prof. Dr. Wolfgang Peukert, Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik, eine Vielzahl von Partikelproben.

Mit modernsten Verfahren stellen sie diese in der flüssigen oder Gas-Phase sowie mit Methoden der Synthese, des Zerkleinerns, des Versprühens und des Emulgierens maßgeschneidert her. Die Proben unterscheiden sich jeweils in nur einem Parameter.

Auf diese Weise können die Wissenschaftler testen, ob es beispielsweise die Größe, die Oberflächenladung oder die Dotierung, das heißt eine künstlich eingebaute Störung, ist, die die Toxizität und die zellulären Effekte entscheidend beeinflussen. Damit sich ein Nanoteilchen toxikologisch bewerten lässt, müssen die Wissenschaftler zudem herausfinden, welche Konzentration welche Reaktion in den Zellen hervorruft.

Das Projekt zeichnet eine weitere Besonderheit aus: Die FAU-Forscher wollen neben den standardisierten Partikeln vor allem Nanoteilchen analysieren, die am Exzellenzcluster für konkrete Anwendungen entwickelt wurden. Zum Beispiel Eisenoxidnanopartikel, die in ein paar Jahren als Transporter für pharmazeutische Wirkstoffe dienen könnten. Die Forscher feilen damit in einem sehr frühen Stadium daran, die Nanopartikel biologisch verträglicher zu machen.

Die Arbeitsgruppe um Prof. Alexiou hat eine neue Methode entwickelt, mit der untersucht werden kann, welche Eigenschaften von Nanoteilchen dazu führen, dass Zellen absterben – und das für mehrere Parameter gleichzeitig. Arbeitsmedizinerin Prof. Schmitz-Spanke und ihr Team hingegen beschäftigen sich vor allem mit der Frage, wie die winzigen Teilchen in Lungenzellen sowie in Zellen, die die Gefäße auskleiden, wirken.

Lungenzellen deswegen, weil die Lunge die Haupteintrittspforte für Nanopartikel in der Umwelt und am Arbeitsplatz ist. Das Gefäßsystem, weil epidemiologische Daten auf eine Zunahme von Herz-Kreislauf-Krankheiten infolge der Exposition gegen Nanopartikel – wie etwa Dieselrußpartikel – hinweisen.

Mit der Kombination verschiedener Analysemethoden sowie der Zusammenarbeit unterschiedlicher wissenschaftlicher Bereiche wollen die Forscher tragfähigere Aussagen darüber treffen, wie Nanopartikel auf Mensch und Umwelt wirken.

Informationen für die Medien:
Prof. Dr. Christoph Alexiou
Tel.: 09131/85- 33142
christoph.alexiou@uk-erlangen.de

Prof. Dr. Simone Schmitz-Spanke
Tel.: 09131/85-22255
simone.schmitz-spanke@fau.de

Prof. Dr. Wolfgang Peukert
Tel.: 09131/ 85-29400
wolfgang.peukert@fau.de

Blandina Mangelkramer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Krebszellen Winterschlaf halten
16.07.2018 | Universitätsklinikum Carl Gustav Carus Dresden

nachricht Feinstaub macht Bäume anfälliger gegen Trockenheit
16.07.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Mister Raney bekommt Konkurrenz - Ein neuer Katalysator auf Nickel-Basis nutzt Nano-Strukturen

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics