Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Urbakterien heute noch überleben

18.12.2015

Sie besiedelten die Erde lange bevor es Pflanzen und Tiere gab: Seit Milliarden von Jahren nutzen bestimmte Mikroorganismen nicht Sauerstoff zum Atmen, sondern Sulfat. Bislang war nicht vollständig verstanden, auf welchem biochemischen Weg diese zumeist im Meer vorkommenden Bakterien durch Atmung Energie für ihr Wachstum gewinnen. Ein internationales Forscherteam unter Federführung portugiesischer Wissenschaftler aus Lissabon und unter Beteiligung der Universität Bonn hat nun diesen fehlenden Schritt entschlüsselt. Die Ergebnisse erscheinen nun im renommierten Fachjournal „Science“.

Wer bei einer Wattwanderung mit den Gummistiefeln im Schlick herumstreift, riecht es sofort: den Geruch nach faulen Eiern. Er rührt von Schwefelwasserstoff her, den winzige Bakterien im Meeressediment produzieren.


Privatdozentin Dr. Christiane Dahl und Dr. Fabian Grein am Anaerobenzelt im Labor des Instituts für Mikrobiologie & Biotechnologie der Universität Bonn.

(c) Foto: Barbara Frommann/Uni Bonn

„Es handelt sich dabei um einen uralten Prozess, der schon vor mehr als drei Milliarden Jahren funktionierte – lange bevor erste Pflanzen und Tiere unseren Planeten besiedelten“, berichtet Privatdozentin Dr. Christiane Dahl vom Institut für Mikrobiologie & Biotechnologie der Universität Bonn. Mit den Cyanobakterien und später den grünen Pflanzen kam der Sauerstoff auf die Erde - doch auch schon vorher erschlossen sich Mikroorganismen durch Atmung Energie. Statt Sauerstoff nutzten sie Sulfat, dass sie zu übel riechendem Schwefelwasserstoff reduzierten.

„Im Meerwasser ist Sulfat in etwa 100-fach höherer Konzentration gelöst als Sauerstoff“, sagt Dr. Dahl. Überall wo Sulfat reichlich vorhanden und Sauerstoff knapp ist, kommen Bakterien und Archaebakterien vor, die auf diese „Sulfatatmung“ spezialisiert sind: Neben den Meeres- auch in Vulkanregionen. Bisher ging die Wissenschaft davon aus, dass es auf dem Weg vom Sulfat zum Schwefelwasserstoff nur drei Schritte gibt. Einer dieser Schritte ist die Reduktion von Sulfit, an dem das Enzym Sulfitreduktase (DsrAB) beteiligt ist.

Eine Voraussetzung für Energiegewinnung durch Atmung ist, dass Membranen in den lebenden Zellen wie eine Batterie aufgeladen werden. „Allerdings war bislang nicht klar, welcher Schritt der Sulfatatmung an eine bakterielle Zellmembran gekoppelt ist“, berichtet die Mikrobiologin der Universität Bonn. Unter der Federführung von Wissenschaftlern um Prof. Dr. Inês A. C. Pereira von der Universidade Nova de Lisboa in Portugal und unter Beteiligung von Dr. Dahl hat ein Forscherteam nun den fehlenden vierten Schritt entdeckt.

Eine Brücke aus Schwefelatomen

Das Forscherteam untersuchte diesen wichtigen Prozess am Urbakterium Archaeoglobus fulgidus, das vor allem in Vulkangebieten vorkommt. Der aus dem Sulfit stammende Schwefel wird gar nicht sofort von der Sulfitreduktase als Schwefelwasserstoff freigesetzt, sondern erst einmal vom Protein DsrC wie in einer Brücke zwischen zwei Schwefelatomen festgehalten. Ein weiteres Protein in der Zellmembran des Bakteriums setzt den Schwefel wieder frei. Dabei wird die Membran aufgeladen und Energie für das Wachstum der Mikroorganismen zur Verfügung gestellt. „Das ist der bislang unbekannte, aber umso wichtigere biochemische Schritt bei der Energiegewinnung durch Atmung“, sagt Dr. Dahl.

Dr. Fabian Grein, der bei Dr. Dahl an der Universität Bonn promovierte, wies während seiner Postdoc-Phase im Labor von Prof. Pereira in Lissabon nach, dass das im Reagenzglas untersuchte Prinzip genauso in sulfatatmendenden Mikroorganismen abläuft - wie etwa dem Bakterium Desulfovibrio vulgaris. „Wenn wir das DsrC-Protein in seiner Menge herunterregelten, dann wuchs das Bakterium deutlich schlechter, weil die Sulfatatmung stark eingeschränkt war“, berichtet Dr. Grein.

„Dieses Bakterium ist von besonderer Bedeutung, da es auch im menschlichen Verdauungstrakt vorkommt und hier entzündliche Erkrankungen hervorrufen kann“, führt Dr. Grein aus. Der intensive Austausch junger Forscher zwischen den Universitäten Lissabon und Bonn war eine wesentliche Voraussetzung dafür, die komplexen biochemischen Vorgänge gemeinsam aufzuklären.

Die Wissenschaftler gehen davon aus, dass sie ein universelles Prinzip entdeckt haben, das bei allen sulfatatmenden Bakterien vorkommt. In vielen alten Gesteinen sind heute noch Spuren von Mikroorganismen feststellbar, die schon lebten als auf der Erde die Sauerstoffatmung noch nicht erfunden war. „Je besser wir diese Milliarden Jahre alten Prozesse verstehen, umso besser können wir diese Spuren aus der frühen Erdgeschichte lesen“, sagt die Mikrobiologin der Universität Bonn. Darüber hinaus ist Schwefel auch für den Menschen ein lebensnotwendiger Nährstoff, den er mit Aminosäuren aufnimmt. Dr. Dahl: „Die verbreiteten Mikroorganismen sorgen durch ihre Sulfatatmung mit dafür, dass Schwefelformen recycled werden, die für die menschliche Ernährung wichtig sind.“

Publikation: A protein trisulfide couples dissimilatory sulfate reduction to energy conservation, Fachjournal “Science”, DOI: 10.1126/science.aad3558

Kontakt für die Medien:

Privatdozentin Dr. Christiane Dahl
Institut für Mikrobiologie & Biotechnologie
Universität Bonn
Tel. 0228/732119
E-Mail: ChDahl@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Enzyme als Doppelagenten: Neuer Mechanismus bei der Proteinmodifikation entdeckt
08.07.2020 | Westfälische Wilhelms-Universität Münster

nachricht Ins richtige Licht gerückt - Reproduzierbare und nachhaltigere Kupplungsreaktionen
08.07.2020 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Im Focus: Robuste Materialien in Schwingung versetzt

Kieler Physikteam beobachtet in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse

In der Physik werden sie zurzeit intensiv erforscht, in der Elektronik könnten sie ganz neue Funktionen ermöglichen: Sogenannte topologische Materialien...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Neues Verständnis der Defektbildung an Silizium-Elektroden

Theoretisch lässt sich das Speichervermögen von handelsüblichen Lithiumionen-Batterien noch vervielfachen – mit einer Elektrode, die auf Silizium anstatt auf Graphit basiert. Doch in der Praxis machen solche Akkus mit Silizium-Anoden nach wenigen Lade-Entlade-Zyklen schlapp. Ein internationales Team um Forscher des Jülicher Instituts für Energie- und Klimaforschung hat jetzt in einzigartiger Detailgenauigkeit beobachtet, wie sich die Defekte in der Anode ausbilden. Dabei entdeckten sie bislang unbekannte strukturelle Inhomogenitäten in der Grenzschicht zwischen Anode und Elektrolyt. Die Erkenntnisse sind in der Fachzeitschrift „Nature Communications“ erschienen.

Silizium-basierte Anoden können in Lithium-Ionen-Akkus prinzipiell neunmal so viel Ladung speichern wie der üblicherweise verwendete Graphit, bei gleichem...

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie Industrieunternehmen ihre Effizienz mit 5G-Netzen steigern können

08.07.2020 | Informationstechnologie

Sicher durch die Mopedsaison: Der richtige Helm kann schwere Kopfverletzungen verhindern

08.07.2020 | Medizin Gesundheit

Wie bauen Bakterien Naturstoffe auf?

08.07.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics