Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich Säuren im ultrakalten interstellaren Raum verhalten

11.06.2019

Wie Säuren bei extrem tiefen Temperaturen mit Wassermolekülen interagieren, haben Bochumer Forscherinnen und Forscher vom Exzellenzcluster Ruhr Explores Solvation (Resolv) gemeinsam mit Kooperationspartnern aus Nimwegen untersucht. Mit spektroskopischen Analysen und Computersimulationen gingen sie der Frage nach, ob Salzsäure (HCl) unter Bedingungen, wie sie im interstellaren Raum herrschen, ihr Proton abgibt oder nicht. Die Antwort war weder Ja noch Nein, sondern abhängig davon, in welcher Reihenfolge das Team Wasser- und Salzsäuremoleküle zusammenbrachte.

Die Ergebnisse beschreibt die Gruppe um Prof. Dr. Martina Havenith, Lehrstuhl für Physikalische Chemie II, und Prof. Dr. Dominik Marx, Lehrstuhl für Theoretische Chemie, von der Ruhr-Universität Bochum gemeinsam mit dem Team um Dr. Britta Redlich von der Radboud University, Nimwegen, in der Zeitschrift Science Advances, online vorab veröffentlicht am 7. Juni 2019.


Die Chemie im interstellaren Raum hat das Team vom Exzellenzcluster Resolv untersucht.

© RUB, Lehrstuhl für Astrophysik

Verstehen, wie sich komplexe Moleküle bildeten

Trifft Salzsäure unter normalen Bedingungen, zum Beispiel bei Zimmertemperatur, auf Wassermoleküle, dissoziiert die Säure sofort: Sie gibt ihr Proton (H+) ab, es bleibt ein Chloridion (Cl-) übrig. Ob der gleiche Prozess auch bei extrem tiefen Temperaturen unter zehn Kelvin – also unter minus 263,15 Grad Celsius – stattfindet, wollte das Forschungsteam herausfinden.

„Wir möchten wissen, ob es unter den extremen Bedingungen im interstellaren Raum die gleiche Säure-Base-Chemie gibt, die wir von der Erde kennen“, erklärt Martina Havenith, Sprecherin des Exzellenzclusters Resolv. „Die Ergebnisse sind entscheidend, um verstehen zu können, wie sich komplexere chemische Moleküle im All gebildet haben – noch lange bevor die ersten Vorläufer für Leben entstanden.“

Um die extrem tiefen Temperaturen im Labor nachzustellen, ließen die Forscher die chemischen Reaktionen in einem Tropfen aus superflüssigem Helium ablaufen. Die Vorgänge verfolgten sie mit einer besonderen Form der Infrarot-Spektroskopie, welche Molekülschwingungen mit niedrigen Frequenzen detektieren kann. Dazu braucht es einen Laser mit besonders starker Leuchtkraft, wie er in Nijmegen zur Verfügung steht. Computersimulationen erlaubten den Wissenschaftlerinnen und Wissenschaftlern, die experimentellen Ergebnisse zu interpretieren.

Auf die Reihenfolge kommt es an

Zunächst gaben die Forscher zu dem Salzsäure-Molekül nacheinander vier Wassermoleküle hinzu. In diesem Prozess dissoziierte die Salzsäure, sie gab ihr Proton an ein Wassermolekül ab, es entstand ein Hydroniumion. Das übrig gebliebene Chloridion, das Hydrioniumion und die drei weiteren Wassermoleküle bildeten ein Cluster.

Erzeugten die Forscher jedoch zunächst einen eis-ähnlichen Cluster aus den vier Wassermolekülen und gaben dann die Salzsäure hinzu, erhielten sie ein anderes Ergebnis: Das Salzsäure-Molekül dissoziierte nicht; das Proton blieb am Chloridion gebunden.

„Unter den Bedingungen, wie sie in interstellaren Wolken herrschen, kann es also zur Dissoziation von Säuren kommen, es muss aber nicht notwendigerweise passieren – die beiden Prozesse sind quasi zwei Seiten derselben Medaille“, fasst Martina Havenith zusammen.

Keine einfache Chemie im Weltall

Die Forscher gehen davon aus, dass sich das Ergebnis auch auf andere Säuren übertragen lässt, also das Grundprinzip der Chemie bei ultrakalten Bedingungen darstellt. „Die Chemie im Weltall ist also keineswegs einfach, sie könnte sogar komplexer sein als die Chemie unter planetaren Bedingungen“, sagt Dominik Marx. Denn es komme nicht nur auf die Mischungsverhältnisse der reagierenden Substanzen an, sondern auch auf die Reihenfolge, in der sie zueinandergegeben werden. „Dieses Phänomen muss bei künftigen Experimenten und Simulationen unter ultrakalten Bedingungen bedacht werden“, so der Forscher.

Förderung

Die Arbeiten wurden finanziell unterstützt von der Deutschen Forschungsgemeinschaft im Rahmen des Exzellenzclusters Resolv (EXC1069, EXC2033) und von der Europäischen Union im Rahmen des Horizon-2020-Programms (Laserlab-Europe, EU-H2020 654148).

Originalveröffentlichung

Devendra Mani et al.: Acid solvation versus dissociation at “stardust conditions”: reaction sequence matters!, in: Science Advances, 2019, DOI: 10.1126/sciadv.aav8179
Pressekontakt

Prof. Dr. Martina Havenith
Lehrstuhl Physikalische Chemie II
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 28249
E-Mail: pc2office@rub.de

Prof. Dr. Dominik Marx
Lehrstuhl für Theoretische Chemie
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 28083
E-Mail: dominik.marx@theochem.rub.de

Redaktion: Julia Weiler

Wissenschaftliche Ansprechpartner:

Prof. Dr. Martina Havenith
Lehrstuhl Physikalische Chemie II
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 28249
E-Mail: pc2office@rub.de

Prof. Dr. Dominik Marx
Lehrstuhl für Theoretische Chemie
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 28083
E-Mail: dominik.marx@theochem.rub.de

Originalpublikation:

Devendra Mani et al.: Acid solvation versus dissociation at “stardust conditions”: reaction sequence matters!, in: Science Advances, 2019, DOI: 10.1126/sciadv.aav8179
Pressekontakt

Video zur Presseinfo:

https://news.rub.de/presseinformationen/wissenschaft/2019-06-11-chemie-wie-sich-...

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick in die dunkle Materie des Genoms
20.11.2019 | Max-Planck-Institut für molekulare Genetik

nachricht Neuer Weg entdeckt, um Killerzellen «umzuprogrammieren»
19.11.2019 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: With artificial intelligence to a better wood product

Empa scientist Mark Schubert and his team are using the many opportunities offered by machine learning for wood technology applications. Together with Swiss Wood Solutions, Schubert develops a digital wood-selection- and processing strategy that uses artificial intelligence.

Wood is a natural material that is lightweight and sustainable, with excellent physical properties, which make it an excellent choice for constructing a wide...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Im Focus: Der direkte Weg zur Phosphorverbindung: Regensburger Chemiker entwickeln Katalysemethode

Wissenschaftler finden effizientere und umweltfreundlichere Methode, um Produkte ohne Zwischenstufen aus weißem Phosphor herzustellen.

Pflanzenschutzmittel, Dünger, Extraktions- oder Schmiermittel – Phosphorverbindungen sind aus vielen Mitteln für den Alltag und die Industrie nicht...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit alten Buchenwäldern in Europa regionale Entwicklung stärken

20.11.2019 | Agrar- Forstwissenschaften

Zelltod oder Krebswachstum: eine Frage des Zusammenhalts!

20.11.2019 | Medizin Gesundheit

Einblick in die dunkle Materie des Genoms

20.11.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics