Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich Mäusebabys den Schutz der Mutter sichern

31.07.2017

Genstudie identifiziert Gruppe von Nervenzellen im Hirnstamm, der den Rufen von Mäusebabys zugrunde liegt // Schreien von menschlichen Neugeborenen könnte auf ähnlichen Verschaltungen im Gehirn beruhen

Neugeborene Mäuse ziehen durch Lautäußerungen die Aufmerksamkeit ihrer Mutter auf sich. Dazu sind sie allerdings nur in der Lage, wenn bestimmte Nervenzellen in ihrem Hirnstamm vorhanden sind. Ohne diese Nervenzellen sind sie stumm.


Schnitt durch das Hinterhirn einer Maus. Die Zellen des Nucleus tractus solitarii (NTS) sind rot dargestellt. Sie sind essentiell für die frühe Lautbildung.

Bild: Luis Hernandez-Miranda, MDC

Über diese Ergebnisse berichtet ein Forschungsteam des Max-Delbrück-Centrums für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) im Fachblatt Proceedings of the National Academy of Sciences (PNAS). Ähnliche Verschaltungen im Gehirn könnten für das Schreien von menschlichen Neugeborenen verantwortlich oder bei Sprachstörungen verändert sein.

Bereits unmittelbar nach der Geburt können Mausebabys nach ihrer Mutter „rufen“, wenn sie von ihr getrennt werden. So sichern sie sich ihre Aufmerksamkeit. Um die Laute zu erzeugen, müssen bestimmte Nervenzellen in einem sehr alten Teil des Gehirns, dem Hirnstamm, zwei Muskelgruppen koordiniert aktivieren. Das hat die MDC-Forschungsgruppe um Carmen Birchmeier festgestellt. Wichtige Beiträge für die interdisziplinäre Studie kamen auch aus dem Pariser Labor von Jean Champagnat und Gilles Fortin am CNRS in Gif sur Yvette.

Das Forschungsteam zeigte in einer Serie von Experimenten, dass die Nervenzellen im Nucleus tractus solitarii die Anspannung von Bauchmuskeln und Kehlkopf steuern. Der Nucleus erhält außerdem sensorische Information aus dem Kehlkopf und der Lunge und koordiniert so das Zusammenspiel sensorischer und motorischer Leistungen während der angeborenen Lautbildung. Sind die Gene für die Transkriptionsfaktoren Olig3 oder Tlx3 verändert, stört das die Reifung der Nervenzellen im Nucleus tractus solitarii bei den Mäuseföten. Wenn der Kern sich nicht entwickeln kann, bleiben die Mäusebabys nach der Geburt stumm.

Die Mutter ignoriert die stummen Jungen

Neugeborene Mäuse brauchen die Nähe ihrer Mutter und signalisieren ihr das. Hat sich das Mäusejunge aus dem sicheren Nest entfernt, so produziert es Salven von jeweils vier bis sechs Rufen die eine Frequenz von 75 kHz haben und damit für das menschliche Ohr nicht wahrnehmbar sind. Bei jedem Ruf atmet es tief und kräftig aus, zeigen Experimente. Die Mutter reagiert prompt: Sie sucht den verirrten Nachwuchs und bringt ihn zum Nest zurück.

Auch wenn die Ultraschall-Laute vom Band stammen, macht sie sich auf die Suche nach dem Jungen. Mäusebabys, die diese Töne nicht erzeugen können, werden von der Mutter ignoriert, selbst wenn sie sie nach der Geburt angenommen hatte. „Wir vermuten, dass die Laute ein evolutionär konserviertes Signal sind, das die Gesundheit der Jungen anzeigt und die Aufmerksamkeit der Mutter sicherstellt“, sagt Carmen Birchmeier. „Die stummen Mäuse sind zudem ein Modell, um die Bedeutung von angeborenen Rufen für die Interaktion zwischen Mutter und Nachwuchs zu untersuchen“, sagt Erstautor Luis Hernandez-Miranda.

Eine interessante weiterführende Frage ist zudem, ob der Nucleus an der Entstehung oder Ausprägung von Sprachstörungen beteiligt ist, die bei einigen Patienten mit Schlaganfall, neurodegenerativen Erkrankungen oder Tumoren beobachtet werden.

Prof. Carmen Birchmeier ist seit 2007 Mitglied des Exzellenzclusters NeuroCure und seit 2016 Mitglied des Einstein-Zentrums für Neurowissenschaften.

Luis Rodrigo Hernandez-Miranda et al. (2017): „Genetic identification of a hindbrain nucleus essential for innate vocalization.“ PNAS. doi:10.1073/pnas.1702893114

Das Max-Delbrück-Centrum für Molekulare Medizin (MDC)

Das Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) wurde 1992 in Berlin gegründet. Es ist nach dem deutsch-amerikanischen Physiker Max Delbrück benannt, dem 1969 der Nobelpreis für Physiologie und Medizin verliehen wurde. Aufgabe des MDC ist die Erforschung molekularer Mechanismen, um die Ursachen von Krankheiten zu verstehen und sie besser diagnostizieren, verhüten und wirksam bekämpfen zu können. Dabei kooperiert das MDC mit der Charité – Universitätsmedizin Berlin und dem Berlin Institute of Health (BIH) sowie mit nationalen Partnern, z.B. dem Deutschen Zentrum für Herz-Kreislauf-Forschung (DHZK), und zahlreichen internationalen Forschungseinrichtungen. Am MDC arbeiten mehr als 1.600 Beschäftigte und Gäste aus nahezu 60 Ländern; davon sind fast 1.300 in der Wissenschaft tätig. Es wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Berlin finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren. https://www.mdc-berlin.de/

Weitere Informationen:

https://www.mdc-berlin.de/1156754 – Website der Forschungsgruppe von Carmen Birchmeier
https://insights.mdc-berlin.de/de/2017/07/mama-hier-bin-ich/ – Weiterführender Artikel zum Paper auf der MDC-Webseite Insights

Annette Tuffs | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics