Wie Selen-Verbindungen zum Katalysator werden könnten

Patrick Wonner (vorn) und Stefan Huber haben das Prinzip der Wasserstoffbrücke auf andere Elemente übertragen. © RUB, Marquard

Als Aktivatoren und Katalysatoren kommen üblicherweise Metallkomplexe zum Einsatz. Sie bilden vollständige, also kovalente Bindungen mit dem Molekül, dessen Reaktion sie beschleunigen sollen. Häufig sind die Metalle allerdings teuer oder giftig.

Schwächere Bindungen reichen

In den vergangenen Jahren zeigte sich, dass es nicht unbedingt eine kovalente Bindung für die Aktivierung oder Katalyse braucht. Auch schwächere Bindungen, zum Beispiel Wasserstoffbrücken, können ausreichen.

Dabei bildet sich die Bindung zwischen einem positiv polarisierten Wasserstoffatom und dem negativ polarisierten Zentrum eines anderen Moleküls. Ähnlich wie Wasserstoff können auch Elemente der siebten Hauptgruppe des Periodensystems, also Halogene wie Chlor, Brom oder Iod, Brückenbindungen eingehen – und als Aktivatoren oder Katalysatoren dienen.

Das Team um Stefan Huber übertrug das Prinzip nun auf Elemente aus der sechsten Hauptgruppe des Periodensystems, die Chalkogene. Die Forscher nutzten Verbindungen mit positiv polarisiertem Selen-Atom. Dieses bildete eine Brückenbindung zu dem Ausgangsmolekül der Reaktion, die sich dadurch um das 20- bis 30-fache beschleunigte.

Zum Vergleich testeten die Chemiker auch Verbindungen, in denen sie das Selen-Zentrum gegen ein anderes Element ersetzten. Moleküle ohne Selen beschleunigten die Reaktion nicht. „Wir können den beobachteten Effekt also eindeutig auf Selen als aktives Zentrum zurückführen“, sagt Huber.

Besser als Schwefel

Aus früheren Studien war bislang nur ein einziger vergleichbarer Fall von Chalkogenbrücken-Katalyse bekannt; statt Selen wurde dabei Schwefel genutzt. „Selen ist leichter polarisierbar als Schwefel und daher langfristig aussichtsreicher als Katalysatorkomponente“, erklärt Stefan Huber. „Zusammen mit den Halogenbrücken wird durch die Chalkogenbrücken das Repertoire der Chemiker um zwei faszinierende Mechanismen erweitert, für die es in der Natur, zum Beispiel in Enzymen, bisher kein bekanntes Gegenstück gibt.“

Im nächsten Schritt möchte das Team zeigen, dass die Selen-Verbindungen als vollwertige Katalysatoren dienen können. Bislang sprechen die Forscher von Aktivatoren, da es eine relativ große Menge der Substanz braucht, um die Reaktion in Gang zu bringen. Erst wenn die Menge der erforderlichen Selen-Verbindung geringer ist als die Menge der Ausgangsmaterialien für die Reaktion, kann man von einem Katalysator sprechen.

Förderung

Die Arbeit wurde unterstützt vom Europäischen Forschungsrat (ERC) im Rahmen des Horizont-2020-Programms (638337).

Originalveröffentlichung

Patrick Wonner, Lukas Vogel, Maximilian Düser, Luís Gomes, Florian Kniep, Bert Mallick, Daniel Werz, Stefan Huber: Carbon-halogen bond activation by selenium-based chalcogen bonding, in: Angewandte Chemie, 2017, DOI: 10.1002/anie.201704816 (englische Version), 10.1002/ange.201704816 (deutsche Version)

Pressekontakt

Prof. Dr. Stefan Huber
Arbeitsgruppe Organokatalyse und supramolekulare Chemie
Lehrstuhl für Organische Chemie I
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 21584
E-Mail: stefan.m.huber@rub.de

Media Contact

Dr. Julia Weiler idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer