Wie Metallcluster wachsen

Das Team um die Marburger Chemieprofessorin Dr. Stefanie Dehnen verfolgte die Bildung eines Metallclusters von den atomaren Bestandteilen bis zur fertigen Verbindung. (Abbildung: AG Dehnen, Philipps-Universität Marburg)

Um chemische Verbindungen gezielt synthetisieren zu können, muss man die Mechanismen kennen, die für ihre Bildung verantwortlich sind. „Rein anorganische Verbindungen sind in dieser Hinsicht weitgehend eine ‚black box‘“, erklärt die Chemieprofessorin Dr. Stefanie Dehnen von der Philipps-Universität, Korrespondenzautorin der aktuellen Studie.

„Das gilt insbesondere für die Bildung vielkerniger Metallkomplexe, so genannter Cluster.“ Denn die Prozesse beim Umbau metallhaltiger Cluster gehen so schnell vonstatten, dass es normalerweise nicht möglich ist, diese Vorgänge und die Zwischenprodukte zu beobachten.

Würde man die beteiligten Mechanismen vollständig kennen, so ließen sich für technische Anwendungen Metall-Cluster maßschneidern, die fein justierbare opto-elektronische und magnetische Eigenschaften aufweisen.

„Aber schon die allerersten Schritte sind noch weitgehend unerforscht und lassen sich nur aufklären, indem man chemische Synthese, Messung und computerchemischer Modellierung miteinander kombiniert“, legt Mitverfasser Dr. Florian Weigend vom Karlsruher Institut für Technologie dar, der zweite Korrespondenzautor des Aufsatzes.

Die Wissenschaftlerinnen und Wissenschaftler verfolgten die Bildung eines vielkernigen Metallclusters, indem sie die aufeinanderfolgenden Kristallstrukturen beobachteten. Hierfür synthetisierte die Gruppe eine Serie von Clustern, die aus den Halbmetallen Germanium und Arsen bestehen und die offenbar in definierten Schritten größer werden. Bei den größten Vertretern befindet sich ein Atom des Übergangsmetalls Tantal im Zentrum der Käfigmoleküle.

Die Befunde legen nahe, dass das Übergangsmetall bei der Clusterbildung sehr früh ins Spiel kommt. „Es kann als ein Art Katalysator angesehen werden, der das Knüpfen und Lösen von Bindungen anstößt, wenn die beobachteten Umformungen vonstattengehen“, führt das Forschungsteam aus.

Alles in allem zeigen die Befunde, dass sich das Übergangsmetall nicht in eine vorweg entstandene Clusterhülle einfügt, sondern dass sich die Schale des Clusters schrittweise um das Atom im Zentrum herum bildet.

In Verbindung mit quantenchemischen Berechnungen unter Weigends Leitung ergibt sich erstmals ein weitgehend quantitatives Gesamtbild. „Die Ergebnisse lassen sich für eine ganze Familie metallischer Clusterverbindungen verallgemeinern“, schreiben die Autorinnen und Autoren.

Neben Dehnen und Weigend sowie dem Doktoranden Stefan Mitzinger sind die Humboldt-Stipendiatin Dr. Lies Broeckaert und Professor Dr. Werner Massa an der aktuellen Veröffentlichung beteiligt. Die zugrunde liegenden Forschungsarbeiten wurden durch die Alexander-von Humboldt-Stiftung, die Friedrich-Ebert-Stiftung sowie die Deutsche Forschungsgemeinschaft finanziell unterstützt.

Stefanie Dehnen lehrt Anorganische Chemie an der Philipps-Universität, wo sie außerdem als stellvertretende Sprecherin des Graduiertenkollegs „Funktionalisierung von Halbleitern“ der Deutschen Forschungsgemeinschaft (GRK 1782) amtiert. Auch in der breitenwirksamen Vermittlung ihrer Forschung ist die Hochschullehrerin aktiv: Dehnen ist Direktorin des Mitmachlabors „Chemikum Marburg“.

Originalpublikation: Stefan Mitzinger & al.: Understanding of Multimetallic Cluster Growth, Nature Communications 25. Januar 2016, DOI: http://dx.doi.org/10.1038/NCOMMS10480

Weitere Informationen:
Ansprechpartnerin: Professorin Dr. Stefanie Dehnen,
Fachgebiet Anorganische Chemie
Tel.: 06421 28-25751
E-Mail: dehnen@chemie.uni-marburg.de
Homepage: http://www.uni-marburg.de/fb15/ag-dehnen

Media Contact

Johannes Scholten idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer