Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie menschliche Zellen schädigende Verklumpungen von Proteinen auflösen können

11.08.2015

Heidelberger Forscher entschlüsseln fundamentalen Mechanismus mit Hilfe von In-vitro-Experimenten

Verklumpte Proteine können mit Hilfe zellulärer Reparatursysteme aufgelöst werden. Der fundamentale Mechanismus, der in menschlichen Zellen beim Auflösen dieser Proteinaggregate zum Tragen kommt, ist jetzt von Heidelberger Wissenschaftlern entschlüsselt worden.

Wie ihre In-vitro-Experimente zeigen, handelt es sich um einen mehrstufigen biochemischen Vorgang, bei dem Proteinmoleküle aus den Verklumpungen herausgelöst werden. An den Arbeiten haben Forscher des Zentrums für Molekulare Biologie der Universität Heidelberg, des Deutschen Krebsforschungszentrums und des Heidelberger Instituts für Theoretische Studien sowie weitere Wissenschaftler aus Deutschland, den USA und der Schweiz mitgewirkt. Die Forschungsergebnisse wurden in „Nature“ veröffentlicht.

In allen Zellen – vom Bakterium bis zum Menschen – treten Proteine in ihrem natürlichen Zustand gefaltet auf: Proteine werden zunächst als lange Ketten aufeinanderfolgender Aminosäuren hergestellt und müssen eine bestimmte dreidimensionale Struktur annehmen, sich also falten, um funktionsfähig zu sein.

Dieser Zustand der korrekten Faltung, die Proteinhomeostase, ist ständig bedroht durch äußere und innere Einflüsse. Schadhafte Proteine verlieren ihre Struktur und entfalten sich. Dabei besteht die Gefahr, dass sie miteinander verklumpen.„Kommt es zur Bildung solcher Aggregate, kann dies Zellen schädigen oder sogar zum Zelltod führen, wie es bei neurodegenerativen Erkrankungen, etwa Alzheimer und Parkinson, oder auch bei Vorgängen des Alterns der Fall ist“, erklärt Prof. Dr. Bernd Bukau, der Direktor des Zentrums für Molekulare Biologie der Universität Heidelberg (ZMBH) ist und zugleich am Deutschen Krebsforschungszentrum (DKFZ) forscht.

Wie Prof. Bukau erläutert, verklumpen schadhafte Proteine nicht nur während des Alterungsprozesses. Eine Ansammlung von Proteinen kann auch auftreten bei Veränderungen der Proteinstruktur durch Mutation sowie durch chemische oder umweltbedingte Belastungen. So kann zum Beispiel eine Änderung der Wachstumsbedingungen wie ein Anstieg der Umgebungstemperatur dazu führen, dass Proteine ihre Struktur verlieren und sich entfalten. „Die Bildung von Proteinaggregaten in verschiedenen Organen des menschlichen Körpers wird mit einer großen Anzahl von menschlichen Erkrankungen in Verbindung gebracht, zu denen auch Stoffwechselstörungen gehören“, so der ZMBH-Direktor.

Nach Angaben der Wissenschaftler war bislang wenig bekannt, wie das natürliche Abwehrsystem des Menschen den Prozess der Proteinverklumpung in jungen gesunden Zellen wirksam umkehrt. „Aggregate von Proteinen aufzulösen, ist ein entscheidender Schritt, um schadhafte Proteine ,wiederzuverwerten‘ und einen Schutz gegen stresssbedingte Zellschädigungen aufbauen zu können. Wir hatten mehrere Hinweise darauf, wer die Hauptbeteiligten in diesem Prozess sind, wussten aber nicht, wie der Ablauf konkret aussieht“, sagt der Leiter der Untersuchungen, Dr. Nadinath Nillegoda, der dem Team von Prof. Bukau angehört. Den Forschern ist es nun gelungen, einen bisher unbekannten und aus mehreren Komponenten aufgebauten Proteinkomplex zu identifizieren, der – unter In-vitro-Bedingungen – wirksam stressbedingte Aggregate von Proteinen auflöst.

Dieser Komplex besteht aus molekularen Faltungshelfern, den Chaperonen, die in diesem Fall zur Klasse der Hitzeschockproteine 70 (Hsp70) gehören. Dabei handelt es sich um Proteine, die anderen Proteinen bei der Faltung helfen. Teil des von den Heidelberger Wissenschaftlern untersuchten Proteinkomplexes sind außerdem Co-Chaperone, die die Hsp70-Aktivität regulieren. Von zentraler Bedeutung sind hier, so Prof. Bukau, die Co-Chaperone der sogenannten J-Proteinfamilie, die den Faltungshelfer Hsp70 an die Proteinaggregate „locken“ und dort zielgenau aktivieren. „Der Schlüsselbefund unserer Arbeit ist, dass zwei Typen dieser J-Proteine dynamisch miteinander wechselwirken müssen, um die Faltungshelfer Hsp70 maximal für die Auflösung der Proteinaggregate zu aktivieren. Erst dadurch entsteht eine potente zelluläre Aktivität zur Umkehrung dieser Aggregate.“

Die computerbasierte Datenanalyse dieser Forschungsarbeiten übernahmen Wissenschaftler des Heidelberger Instituts für Theoretische Studien (HITS). Für das experimentelle Design und die Integration von Daten aus einer Reihe von Untersuchungen entwickelten sie auf dem Gebiet des sogenannten Protein-Protein-Docking eine spezielle Modellierungsmethode, um die Bildung der Chaperonkomplexe zu simulieren. Diese Modellierung auf molekularer Ebene bildete nach den Worten von Prof. Dr. Rebecca Wade, die Forschungsgruppenleiterin am HITS ist und ebenfalls am ZMBH forscht, die entscheidende Grundlage für das Verständnis der dynamischen Interaktionen, die der koordinierten Aktivität der zwei J-Proteintypen im Chaperonkomplex zugrundeliegt.

Nach Angaben von Prof. Bukau steht die Forschung nun vor der großen Herausforderung, die physiologische Rolle und das Potential dieses neuentdeckten Mechanismus soweit zu verstehen, dass die Erkenntnisse aus der Grundlagenforschung für die Umsetzung in den klinischen Bereich genutzt werden können. Die Forscher erhoffen sich davon neue Anstöße für die künftige Entwicklung von therapeutischen Interventionsmethoden. An den aktuellen Arbeiten haben neben den Wissenschaftlern des ZMBH, des DKFZ und des HITS auch Forscher des Leibniz-Instituts für Molekulare Pharmakologie in Berlin, der Northwestern University in Illinois (USA) und der Eidgenössischen Technischen Hochschule Zürich (Schweiz) mitgewirkt.

Originalpublikation:
N. B. Nillegoda, J. Kirstein, A. Szlachcic, M. Berynskyy, A. Stank, F. Stengel, K. Arnsburg, X. Gao, A. Scior, R. Aebersold, D. L. Guilbride, R. C. Wade, R. I. Morimoto, M. P. Mayer and Bernd Bukau: Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature (published online 5 August 2015), doi:10.1038/nature14884

Kontakt:
Prof. Dr. Bernd Bukau
Zentrum für Molekulare Biologie der Universität Heidelberg
Telefon (06221) 54-6850
direktor@zmbh.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.zmbh.uni-heidelberg.de/bukau/default.shtml

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuartiges Antibiotikum gegen Problemkeime in Sicht
21.11.2019 | Justus-Liebig-Universität Gießen

nachricht Neue Forschungsinitiative CHEM|ampere: Nachhaltige chemische Produktion mit Elektrizität
21.11.2019 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Antibiotikum gegen Problemkeime in Sicht

Internationales Forscherteam mit Beteiligung der Universität Gießen entdeckt neuen Wirkstoff gegen gramnegative Bakterien – Darobactin attackiert die Erreger an einem bislang unbekannten Wirkort

Immer mehr bakterielle Erreger von Infektionskrankheiten entwickeln Resistenzen gegen die marktüblichen Antibiotika. Typische Krankenhauskeime wie Escherichia...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sichere Datenübertragung mit Ultraschall am Handy: neue Methode zur Nahfeldkommunikation

21.11.2019 | Kommunikation Medien

Rasante Entstehung von Antibiotikaresistenzen im Behandlungsalltag

21.11.2019 | Medizin Gesundheit

Gesundheits-App als Fitness-Coach für Familien

21.11.2019 | Kommunikation Medien

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics