Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie mehrzellige Cyanobakterien Moleküle transportieren

12.07.2019

Forscherinnen und Forscher der ETH Zürich und der Universität Tübingen klären hochaufgelöst die Struktur und Funktion von Zell-Zell-Verbindungen bei fädigen mehrzelligen Cyanobakterien auf. Damit können sie nun erklären, wie diese Mikroorganismen den Transport von verschiedenen Stoffen zwischen einzelnen Zellen regulieren.

Cyanobakterien, auch als Blaualgen bekannt, sind eine spezielle Klasse von Bakterien, die Photosynthese betreiben können.


Die Verbindungsstellen zwischen Zellen eines Anabaena-Zellverbands sind mit zahlreichen speziellen Kanälen (hellgrün) ausgestattet. (Videostandbild: ETH Zürich)


Die Verbindungen von Anabaena-Zellen (l.) verfügen über spezifische Kanäle, deren Aufbau (3. Bild v.l.) ETH-Forscher erstmals hochaufgelöst aufklärten. (Grafik: Gregor Weiss / ETH Zürich)

Entwicklungsgeschichtlich sind sie uralt. Vorläufer traten bereits vor 2,5 Milliarden Jahre auf der Erde auf und ebneten dank ihrer Fähigkeit der Sauerstoff erzeugenden Photosynthese höherem Leben den Weg.

Einige Cyanobakterien-Arten sind fädige, mehrzellige Organismen, in denen eine gewisse Arbeitsteilung herrscht. So betreiben die einen Zellen Photosynthese, andere nehmen Luftstickstoff auf.

Durch Photosynthese gewinnen die Cyanobakterien Energie in Form von Glukose, den Stickstoff verwenden sie, um Aminosäuren, die Bausteine von Proteinen, zu produzieren.

Den Cyanobakterien stellt sich das Problem, wie die einzelnen Zellen miteinander kommunizieren und Stoffe austauschen können. Photosynthese betreibende Zellen müssen nämlich ihre stickstofffixierenden Schwesterzellen mit Glukose versorgen, in umgekehrter Richtung müssen Aminosäuren transportiert werden.

Dazu haben Cyanobakterien spezielle Zellverbindungen entwickelt. Diese erlauben den Austausch von Nähr- und Botenstoffen über die Zellgrenzen hinweg, ohne dass die Zellen miteinander verwachsen sind.

Struktur in zellulärem Kontext aufgeklärt

Über den detaillierten Aufbau und das genaue Funktionieren der Zellverbindungen bei mehrzelligen fädigen Cyanobakterien war bislang nur wenig bekannt. Eine Gruppe von Forschenden der ETH Zürich und der Universität Tübingen stellt nun in der neuen Ausgabe der Fachzeitschrift «Cell» strukturelle Feinheiten und Funktionsweise der Zell-Zell-Verbindungen, sogenannten Septalverbindungen, bei der Gattung Anabaena in bisher unerreichter Auflösung vor.

So zeigen die Forschenden, dass die Verbindungskanäle aus einer Proteinröhre bestehen, die an beiden Enden mit einem Stopfen verschlossen werden kann. Zudem ist diese Röhre überdacht mit fünfarmigen Protein-Elementen, die ähnlich einer Kamerablende angeordnet sind.

Die Kanäle verbinden die Cytoplasmen der beiden benachbarten Zellen und reichen dabei durch die jeweiligen Membranen und Zellwände hindurch. Die Zellen sind durch einen hauchdünnen Spalt von wenigen Nanometern Breite voneinander getrennt.

«Mit herkömmlicher Elektronenmikroskopie konnte man diese Details bisher nicht klären. Dank einer Erweiterung der Kryo-Elektronenmikroskopie ist es uns gelungen, Einblicke in bislang unerreichter Genauigkeit zu erhalten», sagt Martin Pilhofer, Professor am Institut für Molekularbiologie und Biophysik der ETH Zürich.

Pilhofers Doktorand Gregor Weiss entwickelte ein Verfahren, um die Cyanobakterien so zu präparieren, dass die Kanäle mittels Kryo-Elektronenmikroskopie sichtbar gemacht werden konnten. Dazu «fräste» Weiss in gefrorenen Cyanobakterien die Verbindungsstelle zwischen zwei Zellen schichtweise ab, bis seine Probe dünn genug war. Die kugeligen Zellen wären ohne Vorbehandlung für eine Anwendung in der Kryo-Elektronenmikroskopie zu dick.

«Aufgrund der komplexen Struktur der Verbindungskanäle vermuteten wir einen Mechanismus, der die Kanäle öffnet und schliesst», sagt Karl Forchhammer, Professor für Mikrobiologie an der Universität Tübingen.

Tatsächlich konnte er zusammen mit seinem Team nachweisen, wie die Zellen des Verbands unter verschiedenen Stressbedingungen miteinander kommunizieren. Dazu färbten sie Cyanobakterien-Ketten mit einem fluoreszierenden Farbstoff ein und bleichten dann einzelne Zellen gezielt mit einem Laser. Danach massen die Forscherinnen den Einstrom des Farbstoffs aus Nachbarzellen.

Mithilfe dieser Methode konnten die Forschenden zeigen, dass die Kanäle bei Behandlung mit Chemikalien oder im Dunkeln tatsächlich dichtmachen. Dabei verschliesst sich die filigrane Kappenstruktur eines Kanals wie eine Irisblende und unterbricht den Stoffaustausch zwischen den Zellen, was die Wissenschaftler an unterschiedlich starker Fluoreszenz erkannten.

Schliessmechanismus schützt Zellverband

«Ein solcher Schliessmechanismus schützt den gesamten Zellverband», sagt Forchhammer. So könne eine Zelle verhindern, dass sie beispielsweise Schadstoffe an ihre Nachbarzellen weitergebe, was den gesamten Organismus zum Absterben bringen könnte. Auch können die Cyanobakterien mithilfe der Kanäle verhindern, dass bei mechanischer Beschädigung einzelner Zellen der Inhalt des gesamten Verbundes ausläuft.

Mit ihrer Studie können die Forschenden aufzeigen, dass Zellverbindungen in mehrzelligen nicht näher verwandten Organismen im Lauf der Evolution mehrmals «erfunden» wurden und sich parallel entwickelten.

«Dies unterstreicht, wie wichtig es ist, dass ein mehrzelliger Organismus den Warentransport zwischen einzelnen Zellen kontrollieren kann», sagt Pilhofer. Mit der Klärung der Kanalstruktur und –funktion bei Cyanobakterien fügen die ETH-Forscher dem Gesamtbild ein weiteres Puzzleteil hinzu. «Für uns ist diese Arbeit biologische Grundlagenforschung ohne Fokus auf eine mögliche Anwendung. Vielmehr erlauben uns die neuen Daten Einblicke in die Evolution komplexer Lebewesen», erklärt der ETH-Professor.

Wissenschaftliche Ansprechpartner:

Martin Pilhofer, ETH Zurich, Department of Biology, Institute of Molecular Biology & Biophysics, +41 44 633 3963, pilhofer@mol.biol.ethz.ch

Originalpublikation:

Weiss GL, Kieninger A-K, Maldener I, Forchhammer K, Pilhofer M. Structure and function of a bacterial gap junction analog. Cell, 2019, July 11th. DOI 10.1016/j.cell.2019.05.055

Weitere Informationen:

https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2019/07/kontrollierter...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Enzym für gefährliche Eigenschaften von Hirntumor-Stammzellen verantwortlich
12.07.2019 | Deutsches Krebsforschungszentrum

nachricht ForscherInnen gelingt neuer Einblick in die Mechanismen der Zellteilung
12.07.2019 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Künstliche Intelligenz löst Rätsel der Physik der Kondensierten Materie: Was ist die perfekte Quantentheorie?

Für einige Phänomene der Quanten-Vielteilchenphysik gibt es mehrere Theorien. Doch welche Theorie beschreibt ein quantenphysikalisches Phänomen am besten? Ein Team von Forschern der Technischen Universität München (TUM) und der amerikanischen Harvard University nutzt nun erfolgreich künstliche neuronale Netzwerke für die Bildanalyse von Quantensystemen.

Hund oder Katze? Die Unterscheidung ist ein Paradebeispiel für maschinelles Lernen: Künstliche neuronale Netzwerke können darauf trainiert werden Bilder zu...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Was die Kraftwerke der Zelle in Form hält

Ein Team aus Deutschland und der Schweiz um Professor Oliver Daumke vom MDC hat untersucht, wie ein Protein der Dynamin-Familie die innere Membran der Mitochondrien verformt. Die Ergebnisse, die auch Einblicke in erbliche Erkrankungen des Sehnervs liefern, sind im Journal „Nature“ veröffentlicht.

Mitochondrien sind die Kraftwerke unserer Zellen. Hier wird Energie in Form chemischer Verbindungen wie ATP gewonnen. Um dieser Aufgabe optimal nachgehen zu...

Im Focus: Knobeln auf dem Quanten-Schachbrett

Physiker der Universität Innsbruck schlagen ein neues Modell vor, mit dem die Überlegenheit von Quantencomputern gegenüber klassischen Supercomputern bei der Lösung von Optimierungsaufgaben gezeigt werden könnte. Sie demonstrieren in einer aktuellen Arbeit, dass schon wenige Quantenteilchen genügen würden, um das mathematisch schwierige Damenproblem im Schach auch für größere Schachbretter zu lösen.

Das Damenproblem ist eine schachmathematische Aufgabe, die schon den großen Mathematiker Carl Friedrich Gauß beschäftigt hat, für die er aber erstaunlicher...

Im Focus: Ladungstransfer innerhalb von Übergangsmetall-Farbstoffen analysiert

In farbstoffbasierten Solarzellen sorgen Übergangsmetall-Komplexe dafür, dass Licht in elektrische Energie umgewandelt wird. Bisher ging man davon aus, dass innerhalb des Moleküls eine räumliche Ladungstrennung stattfindet. Dass dies eine zu simple Beschreibung des Prozesses ist, zeigt eine Analyse an BESSY II. Erstmals hat dort ein Team die fundamentalen elektronischen Prozesse rund um das Metallatom und seine Liganden untersucht. Die Arbeit ist in der Fachzeitschrift „Angewandte Chemie, International Edition“ erschienen und stellt das Titelbild.

Organische Solarzellen wie die Grätzel-Zelle bestehen aus Farbstoffen, die auf Übergangsmetall-Komplex-Verbindungen basieren. Sonnenlicht regt die äußeren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hallo Herz! Wie kommuniziert welches Organ mit dem Herzen?

12.07.2019 | Veranstaltungen

Schwarze Löcher und unser Navi im Kopf: Wissenschaftsshow im Telekom Dome in Bonn

11.07.2019 | Veranstaltungen

8. Technologieforum Fahrerlose Transportsysteme und mobile Roboter des Fraunhofer IPA

09.07.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Hallo Herz! Wie kommuniziert welches Organ mit dem Herzen?

12.07.2019 | Veranstaltungsnachrichten

Sniff-Bots für gefährliche Umgebungen:TU Dresden entwickelt Roboter,die Gas erschnüffeln und Gefahren beseitigen können

11.07.2019 | Informationstechnologie

Vielfältig und preiswert: Alternative Pulver für die additive Fertigung von Stählen entwickelt

11.07.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics