Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie mehrzellige Cyanobakterien Moleküle transportieren

12.07.2019

Forscherinnen und Forscher der ETH Zürich und der Universität Tübingen klären hochaufgelöst die Struktur und Funktion von Zell-Zell-Verbindungen bei fädigen mehrzelligen Cyanobakterien auf. Damit können sie nun erklären, wie diese Mikroorganismen den Transport von verschiedenen Stoffen zwischen einzelnen Zellen regulieren.

Cyanobakterien, auch als Blaualgen bekannt, sind eine spezielle Klasse von Bakterien, die Photosynthese betreiben können.


Die Verbindungsstellen zwischen Zellen eines Anabaena-Zellverbands sind mit zahlreichen speziellen Kanälen (hellgrün) ausgestattet. (Videostandbild: ETH Zürich)


Die Verbindungen von Anabaena-Zellen (l.) verfügen über spezifische Kanäle, deren Aufbau (3. Bild v.l.) ETH-Forscher erstmals hochaufgelöst aufklärten. (Grafik: Gregor Weiss / ETH Zürich)

Entwicklungsgeschichtlich sind sie uralt. Vorläufer traten bereits vor 2,5 Milliarden Jahre auf der Erde auf und ebneten dank ihrer Fähigkeit der Sauerstoff erzeugenden Photosynthese höherem Leben den Weg.

Einige Cyanobakterien-Arten sind fädige, mehrzellige Organismen, in denen eine gewisse Arbeitsteilung herrscht. So betreiben die einen Zellen Photosynthese, andere nehmen Luftstickstoff auf.

Durch Photosynthese gewinnen die Cyanobakterien Energie in Form von Glukose, den Stickstoff verwenden sie, um Aminosäuren, die Bausteine von Proteinen, zu produzieren.

Den Cyanobakterien stellt sich das Problem, wie die einzelnen Zellen miteinander kommunizieren und Stoffe austauschen können. Photosynthese betreibende Zellen müssen nämlich ihre stickstofffixierenden Schwesterzellen mit Glukose versorgen, in umgekehrter Richtung müssen Aminosäuren transportiert werden.

Dazu haben Cyanobakterien spezielle Zellverbindungen entwickelt. Diese erlauben den Austausch von Nähr- und Botenstoffen über die Zellgrenzen hinweg, ohne dass die Zellen miteinander verwachsen sind.

Struktur in zellulärem Kontext aufgeklärt

Über den detaillierten Aufbau und das genaue Funktionieren der Zellverbindungen bei mehrzelligen fädigen Cyanobakterien war bislang nur wenig bekannt. Eine Gruppe von Forschenden der ETH Zürich und der Universität Tübingen stellt nun in der neuen Ausgabe der Fachzeitschrift «Cell» strukturelle Feinheiten und Funktionsweise der Zell-Zell-Verbindungen, sogenannten Septalverbindungen, bei der Gattung Anabaena in bisher unerreichter Auflösung vor.

So zeigen die Forschenden, dass die Verbindungskanäle aus einer Proteinröhre bestehen, die an beiden Enden mit einem Stopfen verschlossen werden kann. Zudem ist diese Röhre überdacht mit fünfarmigen Protein-Elementen, die ähnlich einer Kamerablende angeordnet sind.

Die Kanäle verbinden die Cytoplasmen der beiden benachbarten Zellen und reichen dabei durch die jeweiligen Membranen und Zellwände hindurch. Die Zellen sind durch einen hauchdünnen Spalt von wenigen Nanometern Breite voneinander getrennt.

«Mit herkömmlicher Elektronenmikroskopie konnte man diese Details bisher nicht klären. Dank einer Erweiterung der Kryo-Elektronenmikroskopie ist es uns gelungen, Einblicke in bislang unerreichter Genauigkeit zu erhalten», sagt Martin Pilhofer, Professor am Institut für Molekularbiologie und Biophysik der ETH Zürich.

Pilhofers Doktorand Gregor Weiss entwickelte ein Verfahren, um die Cyanobakterien so zu präparieren, dass die Kanäle mittels Kryo-Elektronenmikroskopie sichtbar gemacht werden konnten. Dazu «fräste» Weiss in gefrorenen Cyanobakterien die Verbindungsstelle zwischen zwei Zellen schichtweise ab, bis seine Probe dünn genug war. Die kugeligen Zellen wären ohne Vorbehandlung für eine Anwendung in der Kryo-Elektronenmikroskopie zu dick.

«Aufgrund der komplexen Struktur der Verbindungskanäle vermuteten wir einen Mechanismus, der die Kanäle öffnet und schliesst», sagt Karl Forchhammer, Professor für Mikrobiologie an der Universität Tübingen.

Tatsächlich konnte er zusammen mit seinem Team nachweisen, wie die Zellen des Verbands unter verschiedenen Stressbedingungen miteinander kommunizieren. Dazu färbten sie Cyanobakterien-Ketten mit einem fluoreszierenden Farbstoff ein und bleichten dann einzelne Zellen gezielt mit einem Laser. Danach massen die Forscherinnen den Einstrom des Farbstoffs aus Nachbarzellen.

Mithilfe dieser Methode konnten die Forschenden zeigen, dass die Kanäle bei Behandlung mit Chemikalien oder im Dunkeln tatsächlich dichtmachen. Dabei verschliesst sich die filigrane Kappenstruktur eines Kanals wie eine Irisblende und unterbricht den Stoffaustausch zwischen den Zellen, was die Wissenschaftler an unterschiedlich starker Fluoreszenz erkannten.

Schliessmechanismus schützt Zellverband

«Ein solcher Schliessmechanismus schützt den gesamten Zellverband», sagt Forchhammer. So könne eine Zelle verhindern, dass sie beispielsweise Schadstoffe an ihre Nachbarzellen weitergebe, was den gesamten Organismus zum Absterben bringen könnte. Auch können die Cyanobakterien mithilfe der Kanäle verhindern, dass bei mechanischer Beschädigung einzelner Zellen der Inhalt des gesamten Verbundes ausläuft.

Mit ihrer Studie können die Forschenden aufzeigen, dass Zellverbindungen in mehrzelligen nicht näher verwandten Organismen im Lauf der Evolution mehrmals «erfunden» wurden und sich parallel entwickelten.

«Dies unterstreicht, wie wichtig es ist, dass ein mehrzelliger Organismus den Warentransport zwischen einzelnen Zellen kontrollieren kann», sagt Pilhofer. Mit der Klärung der Kanalstruktur und –funktion bei Cyanobakterien fügen die ETH-Forscher dem Gesamtbild ein weiteres Puzzleteil hinzu. «Für uns ist diese Arbeit biologische Grundlagenforschung ohne Fokus auf eine mögliche Anwendung. Vielmehr erlauben uns die neuen Daten Einblicke in die Evolution komplexer Lebewesen», erklärt der ETH-Professor.

Wissenschaftliche Ansprechpartner:

Martin Pilhofer, ETH Zurich, Department of Biology, Institute of Molecular Biology & Biophysics, +41 44 633 3963, pilhofer@mol.biol.ethz.ch

Originalpublikation:

Weiss GL, Kieninger A-K, Maldener I, Forchhammer K, Pilhofer M. Structure and function of a bacterial gap junction analog. Cell, 2019, July 11th. DOI 10.1016/j.cell.2019.05.055

Weitere Informationen:

https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2019/07/kontrollierter...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Forschungsinitiative CHEM|ampere: Nachhaltige chemische Produktion mit Elektrizität
21.11.2019 | Universität Stuttgart

nachricht Neuartiges Antibiotikum gegen Problemkeime in Sicht
21.11.2019 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

3D-Landkarten der Genaktivität

21.11.2019 | Biowissenschaften Chemie

Rekord-Gammastrahlenblitz aus den Tiefen des Weltraums

21.11.2019 | Physik Astronomie

Gammablitz mit Ultra-Strahlkraft: MAGIC-Teleskope beobachten bisher stärksten Gammastrahlen-Ausbruch

21.11.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics