Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie heiße Quellen der Tiefsee das Klima beeinflussen - Publikation in "Nature Geoscience"

01.10.2015

Wie schafft es die Erde, das Klima stabil zu halten? Der Antwort auf diese Frage ist ein internationales Forscherteam um den Geoökologen Prof. Dr. Thorsten Dittmar vom Institut für Chemie und Biologie des Meeres (ICBM) der Universität Oldenburg ein Stück näher gekommen. Die WissenschaftlerInnen aus zehn verschiedenen Instituten in Europa und den USA haben entdeckt, dass der Vulkanismus in der Tiefsee eine entscheidende Rolle für das langfristige Klima spielt. Die Ergebnisse sind in der Oktoberausgabe der Wissenschaftszeitschrift „Nature Geoscience“ veröffentlicht worden.

Seit jeher tragen die Ozeane viel dazu bei, dass das Klima auf der Erde stabil bleibt. Sie enthalten eine Menge Kohlenstoff, wesentlich mehr als im Kohlenstoffdioxid der Atmosphäre gebunden ist. Das Meer speichert den Kohlenstoff unter anderem im sogenannten gelösten organischen Material, das nach der englischen Übersetzung („dissolved organic matter“) mit DOM abgekürzt wird. Ein Großteil des DOM überdauert viele tausend Jahre lang im Meerwasser. Es fungiert somit als ein großer Langzeit-Kohlenstoffspeicher.


Aus diesem „Schwarzen Raucher“ am Mittelatlantischen Rücken in fast dreitausend Metern Wassertiefe haben die Wissenschaftler einen Teil der Proben entnommen.

MARUM − Zentrum für Marine Umweltwissenschaften, Universität Bremen

In der aktuellen Studie wollten die ForscherInnen um den Wissenschaftler Dr. Jeffrey Hawkes vom ICBM herausfinden, was mit dem DOM passiert, wenn es in die heißen Quellen der Tiefsee gelangt. Mithilfe von Tauchrobotern sammelten sie Proben aus mehreren Tausend Metern Tiefe an verschiedenen Stellen im Atlantik und Pazifik.

In der Tiefsee ist nicht nur der Druck viel höher als an der Wasseroberfläche, es gibt am Meeresboden außerdem heiße Quellen und Vulkane, in denen sich das Meerwasser auf über 400 Grad Celsius aufheizt. Die genaue Frage der Forscher: Wird durch die Hitze neues DOM aufgebaut oder das vorhandene zerstört?

Die klare Antwort nach sechs Jahren Forschungsarbeit: Es wird zerstört. Selbst die stabilsten Verbindungen haben bei 400 Grad keine Chance mehr. Und: Das DOM hat dadurch eine begrenzte Lebensdauer. Sie liegt bei maximal 40 Millionen Jahren. Denn innerhalb dieser Zeit hat der gesamte Ozean einmal die geothermalen Quellen durchlaufen.

Damit haben die ForscherInnen eine Erklärung dafür gefunden, wie das Meer es schafft, den Anteil an Kohlenstoff auch über sehr lange Zeiträume im Gleichgewicht zu halten. Denn was es aufnimmt, muss es wieder loswerden - eine wichtige Voraussetzung für ein stabiles Klima.

Dass mit der Zerstörung des DOM in der Tiefsee ein Kohlenstoff- und damit letztlich auch ein CO2-Speicher verloren geht, halten die ForscherInnen trotz der aktuellen Diskussion um den Treibhauseffekt für unbedenklich, denn die untersuchten Prozesse sind nur über sehr lange Zeiträume von Jahrmillionen von Bedeutung. „Das CO2 ist an sich nichts Schlechtes.

Schlecht sind nur die schnellen Veränderungen im Augenblick“, erklärt Dittmar. Tatsächlich sei das CO2 sogar lebenswichtig, denn ohne könnten Pflanzen, Tiere und Menschen gar nicht existieren. Auf dem Mars gebe es beispielsweise sehr wenig CO2, was ihn unbewohnbar mache.

Die Venus habe zu viel des Treibhausgases. Auf der Erde dagegen ist der CO2-Anteil und das Klima für Leben optimal. Die neu entdeckte Rolle der heißen Quellen in der Tiefsee ist einer der Faktoren, die auf den CO2-Gehalt und das Klima über sehr lange Zeiträume einwirken, aber auf die aktuellen Klimaveränderungen keinen Einfluss haben.

An der Studie beteiligt waren neben dem ICBM folgende Institute: MARUM − Zentrum für Marine Umweltwissenschaften an der Universität Bremen; Max-Planck-Institut für Marine Mikrobiologie Bremen; Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung Bremerhaven; GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel; Jacobs University Bremen; Skidaway Institute of Oceanography, USA; University of Washington, USA; University of Southampton, UK; Université de Toulouse, Frankreich.

„Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation” by Jeffrey A. Hawkes, Pamela E. Rossel, Aron Stubbins, David Butterfield, Douglas P. Connelly, Eric P. Achterberg, Andrea Koschinsky, Valérie Chavagnac, Christian T. Hansen, Wolfgang Bach and Thorsten Dittmar, Nature Geoscience, doi 10.1038/NGEO2543.

Weitere Informationen:

http://www.icbm.de/marine-geochemie/

Dr. Corinna Dahm-Brey | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: CO2 Geoscience Helmholtz-Zentrum ICBM Meerwasser Tiefsee klima

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht RNA-Modifikation - Umbau unter Druck
06.12.2019 | Ludwig-Maximilians-Universität München

nachricht Verstopfung in Abwehrzellen löst Entzündung aus
06.12.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das 136 Millionen Atom-Modell: Wissenschaftler simulieren Photosynthese

Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.

Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: Freiformflächen bis zu 80 Prozent schneller schlichten: Neue Werkzeuge und Algorithmen für die Fräsbearbeitung

Beim Schlichtfräsen komplexer Freiformflächen können Kreissegment- oder Tonnenfräswerkzeuge jetzt ihre Vorteile gegenüber herkömmlichen Werkzeugen mit Kugelkopf besser ausspielen: Das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen entwickelte im Forschungsprojekt »FlexiMILL« gemeinsam mit vier Industriepartnern passende flexible Bearbeitungsstrategien und implementierte diese in eine CAM-Software. Auf diese Weise lassen sich große frei geformte Oberflächen nun bis zu 80 Prozent schneller bearbeiten.

Ziel im Projekt »FlexiMILL« war es, für die Bearbeitung mit Tonnenfräswerkzeugen nicht nur neue, verbesserte Werkzeuggeometrien zu entwickeln, sondern auch...

Im Focus: Bis zu 30 Prozent mehr Kapazität für Lithium-Ionen-Akkus

Durch Untersuchungen struktureller Veränderungen während der Synthese von Kathodenmaterialen für zukünftige Hochenergie-Lithium-Ionen-Akkus haben Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und kooperierender Einrichtungen neue und wesentliche Erkenntnisse über Degradationsmechanismen gewonnen. Diese könnten zur Entwicklung von Akkus mit deutlich erhöhter Kapazität beitragen, die etwa bei Elektrofahrzeugen eine größere Reichweite möglich machen. Über die Ergebnisse berichtet das Team in der Zeitschrift Nature Communications. (DOI 10.1038/s41467-019-13240-z)

Ein Durchbruch der Elektromobilität wird bislang unter anderem durch ungenügende Reichweiten der Fahrzeuge behindert. Helfen könnten Lithium-Ionen-Akkus mit...

Im Focus: Neue Klimadaten dank kompaktem Alexandritlaser

Höhere Atmosphärenschichten werden für Klimaforscher immer interessanter. Bereiche oberhalb von 40 km sind allerdings nur mit Höhenforschungsraketen direkt zugänglich. Ein LIDAR-System (Light Detection and Ranging) mit einem diodengepumpten Alexandritlaser schafft jetzt neue Möglichkeiten. Wissenschaftler des Leibniz-Instituts für Atmosphärenphysik (IAP) und des Fraunhofer-Instituts für Lasertechnik ILT entwickeln ein System, das leicht zu transportieren ist und autark arbeitet. Damit kann in Zukunft ein LIDAR-Netzwerk kontinuierlich und weiträumig Daten aus der Atmosphäre liefern.

Der Klimawandel ist in diesen Tagen ein heißes Thema. Eine wichtige wissenschaftliche Grundlage zum Verständnis der Phänomene sind valide Modelle zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

Intelligente Transportbehälter als Basis für neue Services der Intralogistik

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

RNA-Modifikation - Umbau unter Druck

06.12.2019 | Biowissenschaften Chemie

Der Versteppung vorbeugen

06.12.2019 | Geowissenschaften

Verstopfung in Abwehrzellen löst Entzündung aus

06.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics