Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken

24.05.2019

Sich räumlich orientieren zu können ist eine fundamentale Fähigkeit des Gehirns, die bei vielen neurologischen und psychiatrischen Krankheiten beeinträchtigt ist. Forschungsgruppen weltweit haben Daten über die neuronalen Grundlagen der räumlichen Orientierung zusammengetragen – sowohl die Aktivität einzelner Nervenzellen im Gehirn als auch die großer Zellverbünde scheint eine entscheidende Rolle zu spielen. Wie jedoch das Verhalten individueller Zellen mit dem der großen Zellnetzwerke zusammenhängt, ist bislang weitestgehend unerforscht. Verschiedene Theorien dazu stellt ein internationales Autorenteam in der Zeitschrift „Trends in Cognitive Sciences“ vom 24. Mai 2019 vor.

Für den Review-Artikel kooperierten Dr. Lukas Kunz vom Universitätsklinikum Freiburg, Prof. Dr. Liang Wang von der Chinese Academy of Sciences in Peking und Prof. Dr. Nikolai Axmacher von der Ruhr-Universität Bochum mit weiteren Kollegen der Columbia University in New York.


Prof. Dr. Nikolai Axmacher

RUB, Marquard (Dieses Foto darf nur für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum im Kontext dieser Presseinformation verwendet werden.)

Das GPS-System des Gehirns

Zahlreiche Tierstudien haben gezeigt, dass es besondere Nervenzellen im Gehirn gibt, die für die Navigation wichtig sind. Die Aktivität der sogenannten Ortszellen codiert beispielsweise, wo im Raum sich ein Individuum befindet.

„Zusammen mit anderen spezialisierten Zellen wie den Rasterzellen bilden sie eine Art GPS-System im Gehirn“, erklärt Nikolai Axmacher, Leiter der Bochumer Abteilung Neuropsychologie.

Studien mit Menschen nahmen hingegen üblicherweise die Aktivität größerer Hirnregionen in den Blick und entschlüsselten charakteristische Areale, die für die räumliche Orientierung wichtig sind.

Unabhängig voneinander fanden zwei Forschungsgruppen – eine in New York und ein Verbund aus Bochum, Freiburg und Peking – kürzlich ein mögliches Bindeglied zwischen der Einzelzell- und der Netzwerkebene. In dem vorliegenden Artikel schildern die Teams gemeinsam ihre auf den experimentellen Ergebnissen basierende Theorie.

Mögliches Bindeglied zwischen den Skalen entdeckt

Die Gruppen untersuchten die rhythmische Hirnaktivität von Zellverbünden im sogenannten entorhinalen Kortex. In diesem Hirnbereich sind die Rasterzellen lokalisiert, die in Tierstudien umfangreich charakterisiert wurden und für die eine Rolle bei der räumlichen Orientierung auf Einzelzellebene belegt ist.

In den großflächigeren rhythmischen Hirnwellen fanden die Forscher ähnliche Charakteristika, wie sie zuvor für Einzelzellen beschrieben worden waren.

Wie aber hängen die Oszillationen genau mit der Aktivität einzelner Zellen zusammen? Eine Theorie nimmt an, dass benachbarte Zellen ähnliche Orte codieren; dieses räumliche Muster könnte dann auch in den Oszillationen sichtbar sein. Ein anderer Ansatz beschreibt, dass beim Navigieren in bestimmte Richtungen eine höhere Anzahl unterschiedlicher Zellen aktiviert wird als beim Navigieren in andere Richtungen, was wiederum zu verstärkten Oszillationen führen könnte.

„Die EEG-Oszillationen könnten also den Link zwischen Einzelzellen und den üblicherweise bei Menschen untersuchten Netzwerken darstellen“, folgert Axmacher.

Alternative Theorie

Die Forscher beschreiben jedoch auch einen ganz anderen Interpretationsansatz: „Es ist ebenfalls möglich, dass die Phänomene auf Einzelzell- und auf Netzwerkebene unabhängig voneinander sind“, so Lukas Kunz, Neurowissenschaftler am Universitätsklinikum Freiburg. „Die beiden Ebenen könnten also parallel voneinander zum Verhalten beitragen, ohne kausal miteinander verknüpft zu sein.“

Die Theorien wollen die Forscher künftig weiter überprüfen. „Genauere Einblicke sind nicht nur wichtig, um die Forschungsergebnisse, die an Tieren und Menschen gewonnen werden, integrieren zu können“, sagen die Autoren. „Es wäre auch wichtig zu wissen, ob Einzelzell- und Netzwerkebene unabhängig voneinander oder gemeinsam durch Krankheiten betroffen sind – und ob sie somit zusammen oder einzeln durch pharmakologische Therapien beeinflusst werden könnten.“

Förderung

Die Arbeiten wurden unterstützt von: Deutsche Forschungsgemeinschaft (SFB 874, SFB 1280), Bundesministerium für Bildung und Forschung (01GQ1705A), National Science Foundation (BCS-1724243, BCS-1724243), National Institutes of Health (563386, MH061975, MH104606), Chinese Academy of Science (XDB32010300), Beijing Municipal Science and Technology Commission (Z171100000117014), CAS Interdisciplinary Innovation Team (JCTD-2018-07), Natural Science Foundation of China (81422024, 31771255).

Gemeinsame Presseinformation des Universitätsklinikums Freiburg und der Ruhr-Universität Bochum

Wissenschaftliche Ansprechpartner:

Prof. Dr. Nikolai Axmacher
Abteilung Neuropsychologie
Institut für Kognitive Neurowissenschaft
Fakultät für Psychologie
Ruhr-Universität Bochum
Tel.: 0234 32 22674
E-Mail: nikolai.axmacher@rub.de

Dr. Lukas Kunz
Spatial Memory Lab, Epilepsiezentrum, Klinik für Neurochirurgie
Universitätsklinikum Freiburg
Tel.: 0761 270 52870
E-Mail: lukas.kunz@uniklinik-freiburg.de

Originalpublikation:

Lukas Kunz, Shachar Maidenbaum, Dong Chen, Liang Wang, Joshua Jacobs, Nikolai Axmacher: Mesoscopic neural representations in spatial navigation, in: Trends in Cognitive Sciences, 2019, DOI: 10.1016/j.tics.2019.04.011

Weitere Informationen:

https://news.rub.de/wissenschaft/2018-10-12-neurowissenschaft-hirnwellen-ermoegl... Frühere Presseinformation zum Thema

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Katalyse: Hohe Reaktionsraten auch ohne Edelmetalle
19.06.2019 | Ruhr-Universität Bochum

nachricht Wie sich Bakterien gegen Plasmabehandlung schützen
19.06.2019 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Universität Jena mit innovativer Lasertechnik auf Photonik-Messe in München vertreten

19.06.2019 | Messenachrichten

Meilenstein für starke Zusammenarbeit: Neuer Standort für Rittal und Eplan in Italien

19.06.2019 | Unternehmensmeldung

Katalyse: Hohe Reaktionsraten auch ohne Edelmetalle

19.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics