Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie ein Protein Immunzellen in den Suizid treibt

15.07.2016

Für manch einen Krankheitserreger bedeutet Angriff die beste Verteidigung – sie nisten sich direkt in die Abwehrzellen des menschlichen Körpers ein. Wenn sie jedoch in ihrem Versteck aufgespürt werden, bringt sich die infizierte Zelle selber um und setzt so die Erreger wieder frei. Im «EMBO Journal» berichtet ein Forscherteam vom Biozentrum der Universität Basel, dass ein Protein namens Gasdermin durchlässige Poren in der Membran bildet und so den Suizid der Immunzelle auslöst.

Ein gutes Versteck bietet oftmals der Angreifer selbst. Auch einige Bakterien wie der Tuberkulose- oder Typhus-Erreger haben das erkannt. Sie dringen in Abwehrzellen ein und können dort gut versteckt längere Zeit überleben. Die Makrophagen erwehren sich solcher Eindringlinge, indem sie ein Selbstmordprogramm starten.


Pore, aufgenommen mit dem Rasterkraftmikroskop.

University of Basel, Biozentrum


Mechanismus der Porenbildung des Proteins Gasdermin D, der den Zelltod auslöst.

Universität Basel, Biozentrum

Gemeinsam mit Forschern des Novartis Institute of Biomedical Research und der ETH Zürich hat das Team um Prof. Sebastian Hiller vom Biozentrum der Universität Basel nun erstmals zeigen können, dass ein «Todesprotein» die Zellmembran durchlöchert und die Makrophagen so zum Platzen bringt. Die dadurch freigesetzten Krankheitserreger können nun erneut durch das Immunsystem bekämpft werden.

Gasdermin D: Henker in der Zelle

Eingedrungene Krankheitserreger verraten sich durch winzige Zellbestandteile, die von Rezeptoren im Inneren der Makrophagen erkannt werden. Diese setzen daraufhin eine Signalkette in Gang, die Entzündungsreaktionen auslöst und den Befehl zur Einleitung der Pyroptose – einer Form des programmierten Zelltods – gibt.

«Einige Studien belegten bereits, dass das Protein Gasdermin D eine zentrale Rolle bei der Pyroptose spielt», erklärt Prof. Petr Broz, einer der Hauptautoren der Studie. «Wir haben nun herausgefunden, wie genau Gasdermin die Immunzellen in den Suizid treibt und konnten mithilfe der Kryoelektronen- und Rasterkraftmikroskopie zum ersten Mal die Poren in der Membran sichtbar machen.»

Das Protein Gasdermin D steht am Ende einer langen Signalkette. So alarmieren Rezeptoren die Zelle über fremde Bakterienbestandteile und regen den Zusammenbau des Inflammasoms an. Dieser Proteinkomplex wiederum aktiviert Enzyme, die Gasdermin aufspalten und in seine aktive Form überführen.

«In den Makrophagen ist Gasdermin der Scharfrichter, der das Todesurteil vollstreckt», verdeutlicht Hiller die Aufgabe des Proteins. «Das abgespaltene Gasdermin-Fragment wandert in Richtung Zellmembran, baut sich dort ein und formt zusammen mit weiteren solcher Fragmente eine durchlässige Pore. Die löchrige Membran lässt die Zelle anschwellen, bis sie schliesslich platzt.»

Kooperation von Gasderminen bei Zell-Suizid

Mit Gasdermin D haben die Forscher nicht nur das Protein identifiziert, welches den Immunzellen den Todesstoss versetzt, sondern konnten auch mit hochauflösenden Mikroskopiertechniken sichtbar machen, auf welche Weise dies geschieht. Wie sich herausstellte, braucht es nach der Aufspaltung von Gasdermin D nur eines der beiden Fragmente für einen reibungslosen Einbau in die Zellmembran.

Gasdermine sind eine bis jetzt kaum erforschte Proteinfamilie, die neben Gasdermin D noch fünf weitere Mitglieder zählt. Zukünftig möchten Hiller und sein Team die Struktur und Funktionsweise weiterer Mitglieder der Gasderminfamilie untersuchen, um herauszufinden, ob und wie sie bei der Porenbildung miteinander kooperieren und unter welchen physiologischen Bedingungen diese Proteine den Zell-Suizid ausführen.

Originalbeitrag

Lorenzo Sborgi, Sebastian Rühl, Estefania Mulvihill, Joka Pipercevic, Rosalie Heilig, Henning Stahlberg, Christopher J. Farady, Daniel J. Müller, Petr Broz and Sebastian Hiller
GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death
EMBO Journal; published online 14 July 2016, doi: 10.15252/embj.201694696

Weitere Auskünfte

Prof. Sebastian Hiller, Universität Basel, Biozentrum, Tel. +41 61 267 20 82, E-Mail: sebastian.hiller@unibas.ch

Dr. Katrin Bühler, Universität Basel, Kommunikation Biozentrum, Tel. +41 61 267 09 74, E-Mail: katrin.buehler@unibas.ch

Heike Sacher | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht IMMUNOQUANT: Bessere Krebstherapien als Ziel
19.10.2018 | Julius-Maximilians-Universität Würzburg

nachricht Auf dem Weg zu maßgeschneiderten Naturstoffen
19.10.2018 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics