Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das Klimagas Kohlendioxid zum Rohstoff wird

04.07.2016

Forscher haben einen Katalysator entdeckt, der das Klimagas Kohlendioxid hochselektiv in Ethylen umwandelt – einen wichtigen Ausgangsstoff für die chemische Industrie. In der Zeitschrift „Nature Communications“ beschreibt ein Team um Prof. Dr. Beatriz Roldan Cuenya von der Ruhr-Universität Bochum, wie plasmabehandeltes Kupfer diese Aufgabe verrichten kann. Die Wissenschaftler entschlüsselten auch den Mechanismus, der der erfolgreichen Plasmabehandlung zugrunde liegt.

Forscher haben einen Katalysator entdeckt, der das Klimagas Kohlendioxid hochselektiv in Ethylen umwandelt – einen wichtigen Ausgangsstoff für die chemische Industrie. In der Zeitschrift „Nature Communications“ beschreibt ein Team um Prof. Dr. Beatriz Roldan Cuenya von der Ruhr-Universität Bochum, wie plasmabehandeltes Kupfer diese Aufgabe verrichten kann.


Sie forschen an neuen Katalysatoren, die Kohlendioxid umwandeln: Hemma Mistry (links) und Beatriz Roldan Cuenya

RUB, Kramer

Bislang existierende Katalysatoren für die Umwandlung von Kohlendioxid in nützliche Chemikalien waren nicht effizient genug. Ein Problem: Die Materialien besitzen keine hohe Selektivität; sie produzieren sehr wenig Ethylen und zu viele ungewollte Nebenprodukte. In dem vorliegenden Fall ist dies nun anders.

Mehr Selektivität durch Plasmabehandlung

Doktorandin Hemma Mistry vom Bochumer Institut für Experimentalphysik IV nutzte Kupferfilme als Katalysatoren, die sie zuvor mit einem Sauerstoff- und Wasserstoffplasma behandelte. Dadurch veränderte sie die Eigenschaften der Kupferoberfläche, machte sie zum Beispiel rauer oder weniger rau und oxidierte das Material. Die Wissenschaftlerin variierte die Plasmaparameter so lange, bis sie die optimalen Oberflächeneigenschaften gefunden hatte.

Ihr bester Katalysator erreicht eine höhere Ethylen-Produktionsrate als herkömmliche Kupferkatalysatoren. Gleichzeitig arbeitet er sehr selektiv, sodass kaum unerwünschte Nebenprodukte entstehen. „Es ist ein neuer Rekord für dieses Material“, resümiert Beatriz Roldan Cuenya.

Mechanismus entschlüsselt

Die Forscher entschlüsselten auch den Grund für den Erfolg der Plasmabehandlung. Mit
Synchrotronstrahlung untersuchten sie den chemischen Zustand des Kupferfilms während der Katalyse der Reaktion. So fanden sie die Ursache für die hohe Ethylen-Selektivität. Entscheidend dafür waren positiv geladene Kupferionen an der Katalysatoroberfläche.

Zuvor war man davon ausgegangen, dass Kupfer unter den Reaktionsbedingungen nur in seiner ungeladenen metallischen Form vorliegen kann. Eine Annahme, die die Forscher nun widerlegten und in zusätzlichen mikroskopischen Analysen bestätigten.

„Die Ergebnisse eröffnen neue Möglichkeiten für das gezielte Design von Katalysatoren auf der Nanoskala mit gewünschter Aktivität und Selektivität“, sagt Beatriz Roldan Cuenya, Leiterin des Instituts für Experimentalphysik IV an der RUB mit den Schwerpunkten Festkörper- und Oberflächenphysik.

Kooperationspartner

Für die Studie kooperierte die Gruppe von Beatriz Roldan Cuenya aus Bochum mit der Gruppe von Prof. Dr. Peter Strasser von der Technischen Universität Berlin, der Gruppe von Prof. Dr. Judith C. Yang von der Universität von Pittsburg und der Gruppe von Dr. Eric A. Stach von dem Brookhaven National Laboratory. Das Team nutzte die Versuchsanlagen an der Stanford-Synchrotron-Strahlungsquelle.

Förderung

Finanzielle Unterstützung für die Studie kam vom Bundesministerium für Bildung und Forschung (#03SF0523, CO2EKAT), der Deutschen Forschungsgemeinschaft im Rahmen des Exzellenzclusters Resolv (EXC 1069) sowie der US National Science Foundation (NSF-Chemistry 1213182 und NSF-DMR 1207065) und dem Office for Basic Energy Sciences des US Department of Energy (DE-FG02-08ER15995).

Originalveröffentlichung

Hemma Mistry et al.: Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene, in: Nature Communications, 2016, DOI: 10.1038/ncomms12123

Pressekontakt

Prof. Dr. Beatriz Roldan Cuenya, Institut für Experimentalphysik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, Tel.: 0234 32 23650, E-Mail: beatriz.roldan@rub.de

Redaktion: Julia Weiler

Weitere Informationen:

http://aktuell.ruhr-uni-bochum.de/meldung/2016/07/meld03400.html.de

Raffaela Römer | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HZDR-Forscher entwickeln Tarnkappen-Technologie für leuchtende Nanopartikel
13.11.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ein Chip mit echten Blutgefäßen
13.11.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Im Focus: Datensicherheit: Aufbruch in die Quantentechnologie

Den Datenverkehr noch schneller und abhörsicher machen: Darauf zielt ein neues Verbundprojekt ab, an dem Physiker der Uni Würzburg beteiligt sind. Das Bundesforschungsministerium fördert das Projekt mit 14,8 Millionen Euro.

Je stärker die Digitalisierung voranschreitet, umso mehr gewinnen Datensicherheit und sichere Kommunikation an Bedeutung. Für diese Ziele ist die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

Profilierte Ausblicke auf die Mobilität von morgen

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

MagicMoney: Offline bezahlen – mit deinem Smartphone

13.11.2018 | Wirtschaft Finanzen

5G sichert Zukunft von Industrie 4.0 – DFKI mit der SmartFactoryKL auf der SPS IPC Drives

13.11.2018 | Messenachrichten

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics