Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das Gehirn einer Fruchtfliege Farben verarbeitet

12.01.2018

Biologen klären grundlegende Mechanismen des Farbensehens in einem wirbellosen Tier auf

Menschen und viele Tiere unterscheiden unzählige Farbtöne. Doch was sind die neuronalen Grundlagen des Farbensehens? Wie erkennt das Gehirn Farben, und wie nimmt es sie wahr? Diese Fragen beschäftigen seit Langem sowohl die Naturwissenschaften als auch die Philosophie.


Quelle: Dierk Reiff/Universität Freiburg

Der Arbeitsgruppe um den Freiburger Biologieprofessor Dierk Reiff und seinem Mitarbeiter Dr. Christopher Schnaitmann ist es gelungen, der Antwort in Fruchtfliegen auf die Spur zu kommen: Das Team hat untersucht, wie die frühen Schritte der Farbverarbeitung im Gehirn von Drosophila melanogaster erfolgen.

Die Wissenschaftlerinnen und Wissenschaftler beschreiben einen bei Insekten bisher unbekannten Mechanismus und kommen darüber hinaus zu einer überraschenden Erkenntnis: Obwohl sich das Sehsystem der Insekten und das der Wirbeltiere – einschließlich des Menschen – in Aufbau und Beschaffenheit stark unterscheidet, greifen an der exakt gleichen Stelle im neuronalen Schaltkreis qualitativ gleiche Prinzipien der Informationsverarbeitung. Die Wissenschaftler haben die Studie in der Fachzeitschrift „Cell“ veröffentlicht.

„Für die meisten Menschen sind Fruchtfliegen kleine Plagegeister, doch für uns eignen sich die Tiere ideal um zu verstehen, wie ein biologisches System aus Zellen – also aus Erbsubstanz, Fetten, Zuckern und Proteinen – visuelle Information verarbeitet“, sagt Reiff. Vordergründig betrachtet, scheint der Fall einfach: Licht ist ein hervorragendes Medium, um Informationen über die Umwelt zu übertragen. Für Menschen ist es selbstverständlich, dass Lichtquellen und Objekte Farben besitzen.

Farbe jedoch ist keine Eigenschaft des Lichts. Es besitzt physikalische Eigenschaften wie Wellenlänge, Polarisation und Intensität. „Im Gegensatz dazu ist Farbe eine Art Erfindung des Gehirns“, betont der Biologe. Die Fotorezeptoren der Netzhaut wandeln Veränderungen der Lichtintensität in elektrische Signale um. „Dabei sind Fotorezeptoren von Haus aus farbenblinde ‚Quantenzähler‘. Sie können zum Beispiel Photonen mit einer bestimmten Wellenlänge effizient detektieren, aber sie können sie nicht von einer größeren Anzahl an Photonen in einem anderen Wellenlängenbereich unterscheiden.“

Wie erlangt das Gehirn also Informationen über die spektrale Zusammensetzung eines visuellen Reizes? Das Team hat gemeinsam mit Dr. Oliver Griesbeck vom Max-Planck-Institut für Neurobiologie in Martinsried einen neu entwickelten, winzigen Protein-Biosensor in Nervenzellen der Fruchtfliege eingebracht. In Verbindung mit einem innovativen physiologischen Messverfahren haben die Forscherinnen und Forscher Einsichten in die Funktion des peripheren Sehsystems, insbesondere in die Fotorezeptoren, der Insekten gewonnen.

Die Wissenschaftler nutzten genetische Methoden, um ausgewählte Eigenschaften von Nervenzellen in bestimmten Zelltypen darzustellen, auszuschalten und nach Bedarf wiederherzustellen. Das Team hat so gezeigt, dass – anders als bei Insekten bisher angenommen – so genannte Gegenfarbenmechanismen bereits in den präsynaptischen Fortsätzen von Fotorezeptoren der Fruchtfliege nachweisbar sind. Mithilfe dieser Mechanismen tätigt das Gehirn eine scheinbar einfache Rechenoperation, die für das Farbensehen grundsätzlich erforderlich ist: Es vergleicht die Signale von Fotorezeptoren, die von verschiedenen Wellenlängen bevorzugt angeregt werden.

Ein Vergleich der aufgedeckten neuronalen Schaltkreismechanismen und biophysikalischen Grundlagen mit Befunden aus der Sehforschung an Wirbeltieren – einschließlich des Menschen – zeigt, dass die ersten Verarbeitungsschritte in den Sehsystemen dieser nur weitläufig verwandten Tiere zu qualitativ gleichen Ergebnissen an der exakt gleichen Stelle im neuronalen Schaltkreis führen. Die an den Gegenfarbenmechanismen beteiligten Moleküle, Proteine und zellulären Mechanismen unterscheiden sich jedoch bei Fliegen und Wirbeltieren grundlegend.

„Salopp formuliert, könnte man sagen: Die Hardware ist verschieden, doch im Laufe von mehr als 500 Millionen Jahren hat sich eine Software durchgesetzt, die zu gleichen Ergebnissen führt“, erläutert Reiff. Dies lege nahe, dass unterschiedliche Sehsysteme gleiche Lösungsansätze für gleiche Probleme entwickeln und dass sich diese neuronalen Mechanismen des Farbensehens in beiden Tierstämmen unabhängig entwickelt haben.

Die Ergebnisse der Studie tragen dazu bei, die grundlegenden Mechanismen der Informationsverarbeitung im Gehirn besser zu verstehen. Mittelfristig könnte die Arbeit auch zur Entwicklung nachhaltiger Methoden in der Insektenbekämpfung, etwa in der Landwirtschaft, genutzt werden.

Originalveröffentlichung:
Christopher Schnaitmann, Väinö Haikala, Eva Abraham, Vitus Oberhauser, Thomas Thestrup, Oliver Griesbeck, Dierk F. Reiff: „Color Processing in the Early Visual System of Drosophila“. In: Cell (2018), https://doi.org/10.1016/j.cell.2017.12.018

Mehr zu Dierk Reiffs Forschung:
www.bio1.uni-freiburg.de/tierphys/reiff-lab/reiff-lab

Kontakt:
Prof. Dr. Dierk Reiff
Institut für Biologie I (Zoologie)
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2576
E-Mail: dierk.reiff@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2018/wie-das-gehirn-einer-fruchtfliege-farben-...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics