Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das Gehirn einer Fruchtfliege Farben verarbeitet

12.01.2018

Biologen klären grundlegende Mechanismen des Farbensehens in einem wirbellosen Tier auf

Menschen und viele Tiere unterscheiden unzählige Farbtöne. Doch was sind die neuronalen Grundlagen des Farbensehens? Wie erkennt das Gehirn Farben, und wie nimmt es sie wahr? Diese Fragen beschäftigen seit Langem sowohl die Naturwissenschaften als auch die Philosophie.


Quelle: Dierk Reiff/Universität Freiburg

Der Arbeitsgruppe um den Freiburger Biologieprofessor Dierk Reiff und seinem Mitarbeiter Dr. Christopher Schnaitmann ist es gelungen, der Antwort in Fruchtfliegen auf die Spur zu kommen: Das Team hat untersucht, wie die frühen Schritte der Farbverarbeitung im Gehirn von Drosophila melanogaster erfolgen.

Die Wissenschaftlerinnen und Wissenschaftler beschreiben einen bei Insekten bisher unbekannten Mechanismus und kommen darüber hinaus zu einer überraschenden Erkenntnis: Obwohl sich das Sehsystem der Insekten und das der Wirbeltiere – einschließlich des Menschen – in Aufbau und Beschaffenheit stark unterscheidet, greifen an der exakt gleichen Stelle im neuronalen Schaltkreis qualitativ gleiche Prinzipien der Informationsverarbeitung. Die Wissenschaftler haben die Studie in der Fachzeitschrift „Cell“ veröffentlicht.

„Für die meisten Menschen sind Fruchtfliegen kleine Plagegeister, doch für uns eignen sich die Tiere ideal um zu verstehen, wie ein biologisches System aus Zellen – also aus Erbsubstanz, Fetten, Zuckern und Proteinen – visuelle Information verarbeitet“, sagt Reiff. Vordergründig betrachtet, scheint der Fall einfach: Licht ist ein hervorragendes Medium, um Informationen über die Umwelt zu übertragen. Für Menschen ist es selbstverständlich, dass Lichtquellen und Objekte Farben besitzen.

Farbe jedoch ist keine Eigenschaft des Lichts. Es besitzt physikalische Eigenschaften wie Wellenlänge, Polarisation und Intensität. „Im Gegensatz dazu ist Farbe eine Art Erfindung des Gehirns“, betont der Biologe. Die Fotorezeptoren der Netzhaut wandeln Veränderungen der Lichtintensität in elektrische Signale um. „Dabei sind Fotorezeptoren von Haus aus farbenblinde ‚Quantenzähler‘. Sie können zum Beispiel Photonen mit einer bestimmten Wellenlänge effizient detektieren, aber sie können sie nicht von einer größeren Anzahl an Photonen in einem anderen Wellenlängenbereich unterscheiden.“

Wie erlangt das Gehirn also Informationen über die spektrale Zusammensetzung eines visuellen Reizes? Das Team hat gemeinsam mit Dr. Oliver Griesbeck vom Max-Planck-Institut für Neurobiologie in Martinsried einen neu entwickelten, winzigen Protein-Biosensor in Nervenzellen der Fruchtfliege eingebracht. In Verbindung mit einem innovativen physiologischen Messverfahren haben die Forscherinnen und Forscher Einsichten in die Funktion des peripheren Sehsystems, insbesondere in die Fotorezeptoren, der Insekten gewonnen.

Die Wissenschaftler nutzten genetische Methoden, um ausgewählte Eigenschaften von Nervenzellen in bestimmten Zelltypen darzustellen, auszuschalten und nach Bedarf wiederherzustellen. Das Team hat so gezeigt, dass – anders als bei Insekten bisher angenommen – so genannte Gegenfarbenmechanismen bereits in den präsynaptischen Fortsätzen von Fotorezeptoren der Fruchtfliege nachweisbar sind. Mithilfe dieser Mechanismen tätigt das Gehirn eine scheinbar einfache Rechenoperation, die für das Farbensehen grundsätzlich erforderlich ist: Es vergleicht die Signale von Fotorezeptoren, die von verschiedenen Wellenlängen bevorzugt angeregt werden.

Ein Vergleich der aufgedeckten neuronalen Schaltkreismechanismen und biophysikalischen Grundlagen mit Befunden aus der Sehforschung an Wirbeltieren – einschließlich des Menschen – zeigt, dass die ersten Verarbeitungsschritte in den Sehsystemen dieser nur weitläufig verwandten Tiere zu qualitativ gleichen Ergebnissen an der exakt gleichen Stelle im neuronalen Schaltkreis führen. Die an den Gegenfarbenmechanismen beteiligten Moleküle, Proteine und zellulären Mechanismen unterscheiden sich jedoch bei Fliegen und Wirbeltieren grundlegend.

„Salopp formuliert, könnte man sagen: Die Hardware ist verschieden, doch im Laufe von mehr als 500 Millionen Jahren hat sich eine Software durchgesetzt, die zu gleichen Ergebnissen führt“, erläutert Reiff. Dies lege nahe, dass unterschiedliche Sehsysteme gleiche Lösungsansätze für gleiche Probleme entwickeln und dass sich diese neuronalen Mechanismen des Farbensehens in beiden Tierstämmen unabhängig entwickelt haben.

Die Ergebnisse der Studie tragen dazu bei, die grundlegenden Mechanismen der Informationsverarbeitung im Gehirn besser zu verstehen. Mittelfristig könnte die Arbeit auch zur Entwicklung nachhaltiger Methoden in der Insektenbekämpfung, etwa in der Landwirtschaft, genutzt werden.

Originalveröffentlichung:
Christopher Schnaitmann, Väinö Haikala, Eva Abraham, Vitus Oberhauser, Thomas Thestrup, Oliver Griesbeck, Dierk F. Reiff: „Color Processing in the Early Visual System of Drosophila“. In: Cell (2018), https://doi.org/10.1016/j.cell.2017.12.018

Mehr zu Dierk Reiffs Forschung:
www.bio1.uni-freiburg.de/tierphys/reiff-lab/reiff-lab

Kontakt:
Prof. Dr. Dierk Reiff
Institut für Biologie I (Zoologie)
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2576
E-Mail: dierk.reiff@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2018/wie-das-gehirn-einer-fruchtfliege-farben-...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nonstop-Transport von Frachten in Nanomaschinen
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Wie sich ein Kristall in Wasser löst
20.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics