Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Daptomycin multiresistente Bakterien tötet

25.10.2016

Das Antibiotikum Daptomycin ist oft die letzte Waffe gegen multiresistente Bakterien. Unklar war bislang, wie genau das Medikament wirkt. Eine neue Studie unter Federführung der Universitäten Bonn und Amsterdam bringt nun Licht ins Dunkel. Demnach hemmt Daptomycin durch einen bislang unbekannten Mechanismus die Zellwand-Synthese der Erreger. Die Arbeit ist nun in der Fachzeitschrift PNAS erschienen.

Daptomycin ist ein so genanntes Reserve- oder Notfall-Antibiotikum: Es gilt oft als letzte Rettung gegen multiresistente Bakterien wie zum Beispiel MRSA-Keime. Seit mehr als zehn Jahren ist die Substanz in Deutschland inzwischen zugelassen. Zu der Art und Weise, wie sie Bakterien tötet, gab es aber bislang verschiedene Hypothesen. „Es ist absolut ungewöhnlich“, betont Prof. Dr. Tanja Schneider vom Institut für Pharmazeutische Mikrobiologie der Universität Bonn: „Bei allen anderen zugelassenen Antibiotika kennen wir den Wirkmechanismus; bei Daptomycin tappen wir dagegen selbst nach Jahrzehnten intensiver Forschung noch weitgehend im Dunkeln.“


Daptomycin-Moleküle (blau) schieben sich mit dem Schwanz voran zwischen die Membran-Lipide (grau bzw. rot). In der Folge löst sich ein wichtiges Enzym (grün) von der Innenseite der Membran.

© Grafik: AG Tanja Schneider/Uni Bonn

In dieses Dunkel bringen die Wissenschaftler mit ihrer Studie nun etwas Licht. Demnach hemmt Daptomycin mit einem trickreichen Mechanismus die Zellwand-Synthese der gefährlichen Erreger. An der Arbeit waren neben den Universitäten Bonn und Amsterdam auch die Ruhr-Universität Bochum, die Universität Newcastle und das Deutsche Zentrum für Infektionsforschung (DZIF) beteiligt.

Bakterien sind von einer Membran umgeben, die der Haut einer Seifenblase ähnelt. In ihr sind zahlreiche Proteine eingebettet, die wichtige Aufgaben in der Zelle übernehmen. An die Membran schließt sich nach außen die feste Zellwand an.

Die Membran selbst ist dagegen relativ flexibel. Sie besteht aus Lipiden, einer Substanzgruppe, zu der auch Fette zählen. In Membranen gibt es verschiedene Lipid-Typen. Einige von ihnen haben eine chemische Struktur, die sie sehr beweglich macht – wie leichtflüssiges Öl. Andere sind dagegen zäh wie erkaltetes Fett. In der Bakterienmembran wechseln sich flüssigere mit festeren Bereichen ab. Die Anordnung dieser Bereiche ändert sich ständig – die Membran ist also ein sehr dynamisches System.

Magnet in der Zellmembran

Daptomycin bringt diesen Aufbau nun gründlich durcheinander. Das Antibiotikum ähnelt einer Kaulquappe mit einem dicken Kopf und einem kurzen Schwanz. Dieser Schwanz taucht in die Außenseite der Bakterienmembran ein. Dazu muss sich der Kopf Platz verschaffen und die Lipide etwas zur Seite schieben. „Das funktioniert augenscheinlich nur an bestimmten Stellen, an denen die Membran ausreichend fluide ist“, erklärt Prof. Schneider.

Daptomycin-Moleküle haben zudem unter bestimmten Bedingungen die Tendenz, sich aneinanderzulagern. Diese Aggregate benötigen besonders große flüssige Membranbereiche. Zu diesem Zweck ziehen sie – ähnlich wie ein Magnet – weitere leicht bewegliche Lipide an sich heran. Dadurch kommt es zu gravierenden Störungen der Membranstruktur. Proteine, die normalerweise an der Innenseite des Lipid-Häutchens befestigt sind, können sich lösen und ihre Funktion verlieren. „Darunter sind auch Enzyme, die den Aufbau der Bakterien-Zellwand katalysieren“, erklären Schneiders Mitarbeiter Dr. Anna Müller und Dr. Fabian Grein. „Ohne diese Schutzhülle gehen die Erreger zugrunde.“

Neben dem nun gefundenen Mechanismus vermuten die Wissenschaftler noch weitere, die zur antibakteriellen Wirkung von Daptomycin beitragen. Diese aufzuklären, ist Thema aktueller Forschungsarbeiten. Den genauen Wirkungsmechanismus eines Antibiotikums im Detail zu verstehen, sei enorm wichtig. „So können wir beispielsweise besser abschätzen, mit welchen anderen Antibiotika sich der Wirkstoff sinnvoll kombinieren lässt oder wie groß das Risiko einer Resistenzbildung ist“, betont Tanja Schneider.

Momentan wird Daptomycin nur in Fällen eingesetzt, in denen andere Antibiotika versagen – die Mediziner wollen nicht riskieren, dass MRSA-Keime durch unbedachte Nutzung gegen den Wirkstoff unempfindlich werden. Diese Gefahr besteht durchaus: Schon jetzt gibt es Bakterienstämme, die selbst gegen diese schlagkräftige Waffe resistent sind.

Publikation: Anna Müller, Michaela Wenzel, Henrik Strahl, Fabian Grein, Terrens N. V. Saaki, Bastian Kohl, Tjalling Siersma, Julia E. Bandow, Hans-Georg Sahl, Tanja Schneider, Leendert W. Hamoen: Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains; PNAS; DOI: 10.1073/pnas.1611173113

Kontakt für die Medien:

Prof. Dr. Tanja Schneider
Institut für Pharmazeutische Mikrobiologie der Universität Bonn
Deutsches Zentrum für Infektionsforschung (DZIF)
Tel. 0228/735688 oder 735266
E-Mail: tschneider@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wenn Zellen zu Kannibalen werden
21.10.2019 | Max-Planck-Institut für Neurobiologie

nachricht Wie sich Darmzellen erneuern – Klumpfuss spielt Rolle bei Zelldifferenzierung
21.10.2019 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Strom aus Meereswellen – Prototyp läuft in Nordsee

21.10.2019 | Energie und Elektrotechnik

Wenn Zellen zu Kannibalen werden

21.10.2019 | Biowissenschaften Chemie

Neue Impulse für die Energiewende – Power2X startet in die zweite Projektphase

21.10.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics