Wie Cohesin die Erbsubstanz in Falten legt

Schematische Darstellung des “loop-extrusion” Mechanismus (Copyright: IMP)

Vor 20 Jahren wurde am IMP ein Molekül entdeckt, dessen Form auf erstaunliche Weise mit seiner Funktion korrespondiert. Der ringförmige Proteinkomplex, der bei der Zellteilung die verdoppelten Chromosomen bis zu ihrer endgültigen Trennung umklammert, erhielt daher folgerichtig den Namen Cohesin.

Neben seiner entscheidenden Rolle bei der Zellteilung entdeckten die Forscher am IMP und anderswo in den folgenden Jahren noch weitere wichtige Aufgaben des Cohesins. So hilft der Komplex, die insgesamt zwei Meter langen DNA-Fäden, die in jedem Zellkern enthalten sind, auf ein winziges Maß zu komprimieren; unter anderem dadurch, dass die DNA in Schleifen gelegt wird. „Wir vermuten, dass auch dabei der Cohesin-Ring die DNA wie eine Spange umfasst“, beschreibt IMP-Direktor Jan-Michael Peters die gängige Hypothese.

Schleifenbildung zur Genregulation

Die Schleifenbildung erfolgt nicht willkürlich. Form und Position der Schleifen haben entscheidenden Einfluss auf die Genregulation, indem sie bestimmte DNA-Regionen einander annähern. „Lange war es ein Rätsel, wie regulatorische Elemente – die Enhancer – weit entferne Gene aktivieren können. Die Lösung liegt vermutlich im präzise gesteuerten Zurückfalten der DNA, wodurch die Enhancer mit den richtigen Genen in Kontakt kommen“, so Peters.

Mit großer Wahrscheinlichkeit ist auch dafür das Cohesin notwendig. Peters und sein Team hatten bereits gezeigt, dass die Komplexe genau dort angereichert sind, wo die DNA-Stränge zu Schleifen aufgefaltet sind.

Seit kurzem wird spekuliert, dass diese Schleifenbildung durch einen sogenannten „loop extrusion“-Mechanismus erfolgt. Nach dieser Hypothese umschließt das Cohesin den DNA-Strang zunächst an einer beliebigen Stelle. Anschließend wird die DNA durch den Cohesin-Ring „gepumpt“, bis eine molekulare Barriere die Bewegung stoppt. Dieses Element, das wie ein Knoten im Seil wirkt, ist ein DNA-bindendes Protein mit der Bezeichnung CTCF. Auf diese Art und Weise können weit voneinander entfernte Abschnitte im Genom gezielt in direkten Kontakt gebracht werden, um so ihre Funktionen bei der Genregulation auszuüben.

Transkription als Motor?

In ihrer aktuellen Arbeit, die diese Woche im Wissenschaftsmagazin NATURE publiziert wird, präsentieren die IMP-Forscher nun Hinweise, die für die Existenz eines solchen Mechanismus sprechen. Georg Busslinger, Doktorand im Team von Jan-Michael Peters, konnte in Mauszellen nachweisen, dass sich die Cohesin-Komplexe tatsächlich über weite Strecken entlang des DNA-Strangs bewegen. Die Transkription, also das Ablesen der DNA-Information, wirkt dabei teilweise als Motor.

„Wir haben die Tür zu einem Phänomen aufgestoßen, mit dem sich noch viele zukünftige Arbeiten beschäftigen werden“, kommentiert Jan-Michael Peters die Publikation. Die Wirkmechanismen von Cohesin zu verstehen sei auch deshalb so wichtig, weil zahlreiche Erkrankungen bis hin zu Krebs mit Fehlfunktionen des Cohesins assoziiert sind.

Originalpublikation
Busslinger GA, Stocsits RR, van der Lelij P, Axelsson E, Tedeschi A, Galjart N und Peters J-M: Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature Advance Online Publication, 19. April 2017, DOI 10.1038/nature22063.

Illustration
Eine Illustration steht auf der IMP-Website zum Download zur Verfügung und kann im Zusammenhang mit dieser Aussendung unentgeltlich verwendet werden: https://www.imp.ac.at/news-media/downloads/
Legende: Schematische Darstellung des “loop-extrusion” Mechanismus (Copyright: IMP)

Über das IMP
Das Forschungsinstitut für Molekulare Pathologie betreibt in Wien biomedizinische Grundlagenforschung. Hauptsponsor ist der internationale Unternehmensverband Boehringer Ingelheim. Mehr als 200 Forscherinnen und Forscher aus fast 40 Nationen widmen sich am IMP der Aufklärung grundlegender molekularer und zellulärer Vorgänge, um komplexe biologische Phänomene im Detail zu verstehen. Das IMP ist Gründungsmitglied des Vienna Biocenter, Österreichs Leuchtturm im internationalen Konzert molekularbiologischer Top-Forschung. www.imp.ac.at

Kontakt
Dr. Heidemarie Hurtl
Communications
IMP – Forschungsinstitut für Molekulare Pathologie
hurtl@imp.ac.at
+43 (0)1 79730 3625

https://www.imp.ac.at/news-media/detail/article/looping-the-genome-how-cohesin-d…

Media Contact

Dr. Heidemarie Hurtl idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer