Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Blätter im Fluss – Forscher untersuchen Biomechanik der Herzklappenentstehung

18.04.2018

Im Laufe eines 80-jährigen Lebens pumpt das menschliche Herz über 200 Millionen Liter Blut durch den Körper. Diese beeindruckende Leistung hängt entscheidend von der Ausbildung der Herzklappen ab. Im frühembryonalen Herzen fehlen Herzklappen. Die rhythmisch aufeinanderfolgenden Kontraktionen der Herzkammern erzeugen zunächst ein abwechselndes Vorwärts- und Zurückströmen des Blutes. Erst die Umformung der flachen Herzkissen in bewegliche und verschließbare Herzklappen führt zu einem zielgerichteten Blutfluss, weil ein Zurückströmen des Blutes verhindert wird.

Wissenschaftler der Universität Potsdam und der Medizinischen Hochschule Hannover haben nun molekulare Mechanismen entdeckt, die durch den Blutfluss aktiviert werden und die Ausbildung von Herzklappen steuern. Die Ergebnisse ihrer Forschungen haben die Biologen in der Fachzeitschrift eLIFE veröffentlicht.


Ausformung der Herzklappen durch den Blutfluss (Pfeil). Blutzellen strömen im atrioventrikulären Kanal des Zebrafischherzens an der luminalen Seite der Herzklappen vorbei (Sterne)

Stefan Donat, Arbeitsgruppe Seyfried

Seit einiger Zeit wird vermutet, dass die Ausbildung von Herzklappen auf biomechanischen Kräften beruht, die durch den Blutfluss auf die embryonalen Herzkissen einwirken. Diese Kräfte bewirken in den Herzkissen molekulare Veränderungen. Sie steuern die Umformung in Herzklappen. Wissenschaftler suchten seit Langem nach molekularen Auslösern, die zur Ausbildung der Herzklappen aus dem flachen Herzkissen führt.

Embryonale Herzklappen haben einen sehr einfachen Aufbau mit zwei unterschiedlichen Seiten, der pflanzlichen Blättern mit verschiedenen Ober- und Unterseiten ähnelt. Die dem Inneren des Herzschlauches zugewandte Seite unterscheidet sich in ihrer Form und Beschaffenheit von der dem Äußeren des Herzschlauches zugewandten Seite.

Hierbei sind nur die Zellen auf der Innenseite, nicht die Außenzellen, dem Blutfluss durch das Herz ausgesetzt. In den transparenten Eiern des Zebrafisches können Wissenschaftler diesen Prozess mit mikroskopischen Methoden beobachten.

Um herauszufinden, wie es zur Entstehung und Ausbildung der unterschiedlichen Innen- und Außenseiten der Herzklappen kommt, ergründeten die Wissenschaftler zunächst, welche Gene durch den Blutstrom während der frühen Herzklappenentwicklung des Zebrafisches angeschaltet werden. Dabei machten sie eine überraschende Entdeckung. Sie fanden eine Gruppe von Genen, die aus der menschlichen Blutgefäßerkrankung zerebrale kavernöse Malformationen bekannt sind. Patienten mit dieser Erkrankung leiden an Verwachsungen von Blutgefäßen, was zu Blutungen und Schlaganfällen führen kann.

Zunächst wunderten sich die Wissenschaftler über die mögliche Verbindung dieser Gene mit der Herzklappenentwicklung. In weiterführenden Studien konnten sie jedoch zeigen, dass die Gene eine wichtige Funktion darin haben, wie Zellen biomechanische Kräfte des Blutflusses erspüren. Dabei machen sie die Zellen unempfindlicher für den Einfluss des Blutflusses. Wurden diese Gene ausgeschaltet, bildeten sich die Herzklappen nicht mehr aus.

„Wir vermuten, dass diese Gene in einem kleinen Bereich des Herzkissens besonders aktiv sind und dort die Ausbildung der Außenseite der Herzklappe auslösen. Dies könnte ein Kristallisationspunkt sein, an dem sich die frühen Herzkissen in funktionale Herzklappen umbilden“, erläutert Prof. Dr. Salim Seyfried von der Universität Potsdam. Die Ergebnisse der Forscher werfen eine Vielzahl an weiterführenden Fragen auf. Unter anderem wollen sie herausfinden, ob die Gene eine diagnostische Anwendung für angeborene Herzfehler des Menschen ermöglichen.

Die molekularen Mechanismen der Herzklappenbildung sind nun um einige wichtige Spieler reicher, deren Wechselwirkung genauer erforscht werden kann. Schließlich stellt sich auch die Frage, ob die Erkrankung zerebrale kavernöse Malformationen auf veränderte biomechanische Prozesse in Blutgefäßen zurückzuführen sein könnte.

Illustration: Ausformung der Herzklappen durch den Blutfluss (Pfeil). Blutzellen strömen im atrioventrikulären Kanal des Zebrafischherzens an der luminalen Seite der Herzklappen vorbei (Sterne)
(Quelle: Stefan Donat, Arbeitsgruppe Seyfried)

Kontakt: Prof. Dr. Salim Seyfried, Institut für Biochemie und Biologie
Telefon: 0331 977-5540
E-Mail: salim.seyfried@uni-potsdam.de
Internet: https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msy037/4924857
eLife 2018; 7:e28939. DOI: https://doi.org/10.7554/eLife.28939

Medieninformation 18-04-2018 / Nr. 060
Prof. Dr. Salim Seyfried, Dr. Barbara Eckardt

Universität Potsdam
Referat Presse- und Öffentlichkeitsarbeit
Am Neuen Palais 10
14469 Potsdam
Tel.: +49 331 977-2964
Fax: +49 331 977-1130
E-Mail: presse@uni-potsdam.de
Internet: www.uni-potsdam.de/presse

Prof. Dr. Salim Seyfried, Dr. Barbara Eckardt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Magische kolloidale Cluster
11.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kupferverbindung als Recheneinheit in Quantencomputern
11.12.2018 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

11.12.2018 | Physik Astronomie

Besser Bohren – Neues Nanokomposit stabilisiert Bohrflüssigkeiten

11.12.2018 | Geowissenschaften

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics