Wie aus einem Fahrstuhl ein Tunnel wird: Chloridströme durch Glutamat-Transporter

Der Glutamat-Transporter: Eine Nanomaschine mit zwei Aufgaben Copyright: Forschungszentrum Jülich

Das Team um den Mediziner und Biophysiker Prof. Christoph Fahlke vom Jülicher Institute of Complex Systems (ICS-4) hat sich eine bestimmte Art von Glutamat-Transportern vorgenommen, die sogenannten Excitatory Amino Acid Transporters (EAATs).

Das Spannende an dieser Klasse von Transportern: Sie kombinieren zwei strukturell, funktionell und thermodynamisch unterschiedliche Transportprozesse in einem Proteinmolekül – den sogenannten sekundär-aktiven Transport von Glutamat und die Diffusion von Chloridionen durch einen Kanal.

„Eine solche Doppelfunktion ist für verschiedene Proteine postuliert worden, wir konnten erstmals aufklären, wie es tatsächlich funktioniert“, erläutert Christoph Fahlke. Dank einer speziellen Computersimulation, der Molekulardynamik (Molecular Dynamics), haben die Wissenschaftler eine Struktur des Transporters identifiziert, bei der ein Ionenkanal entsteht.

Glutamat ist der bedeutendste erregende Neurotransmitter im zentralen Nervensystem. Er sorgt dafür, dass Signale von einer Nervenzelle zur anderen übertragen werden. Glutamat spielt eine wichtige Rolle für die Bewegungsteuerung, die Sinneswahrnehmung und das Gedächtnis.

Allerdings: Zu viel Glutamat kann Nervenzellen schädigen. Forscher vermuten, dass es einen Zusammenhang gibt zwischen hohen Glutamatkonzentrationen und Schlaganfällen, Amyotropher Lateralsklerose (degenerative Erkrankung des motorischen Nervensystems), aber auch Erkrankungen wie Epilepsie und Gleichgewichtsstörungen.

Die Hauptaufgabe von Glutamat-Transportern ist es, Glutamat aus der Synapse zu entfernen. Dieser Transport beginnt mit der Bindung von Glutamat an der Außenseite der Zelle. Danach bewegt sich ein Abschnitt des Proteins wie ein Fahrstuhl durch die Membran und gibt auf der anderen Membranseite den Neurotransmitter wieder frei.

Während dieser Prozess gut verstanden ist, war lange Zeit völlig unklar, wie ein solches Protein einen Chloridkanal bilden kann. Ionenkanäle besitzen eine wassergefüllte Verbindung zwischen beiden Seiten der Zellmembran, durch die bestimmte Ionen wie durch einen Tunnel wandern und so elektrische Ströme erzeugen. Mit Hilfe dieser Ströme können die Glutamat-Transporter die Erregbarkeit von Neuronen steuern.

Das Team um Christoph Fahlke hat mehrere Jahre versucht, den Ionenkanalmechanismus mit verschiedensten experimentellen Techniken zu enträtseln. Alle Ansätze scheiterten. „Heute wissen wir, dass das an der Komplexität der Transmembranproteine lag. Sie ändern sehr ausgeprägt ihre räumliche Struktur“, erklärt der Jülicher Wissenschaftler Dr. Jan-Philipp Machtens. Für den Durchbruch sorgten Simulationen am Jülicher Supercomputer JUROPA mit einer speziellen rechenintensiven Methode.

Molekulardynamik erlaubt es, Wechselwirkungen zwischen Atomen und Molekülen zu simulieren. Zusammen mit Kollegen vom Max-Planck-Institut für biophysikalische Chemie in Göttingen entwickelten die Forscher ein atomares Modell des Glutamat-Transporters in einer Lipidmembran, das eine direkte Simulation der Transportfunktionen erlaubt und damit die Strukturänderungen im Protein, die zur Ionenkanalöffnung führen, sehr genau vorhersagt.

„Unsere Beobachtungen haben wir mit elektrophysiologischen und fluoreszenzspektroskopischen Experimenten nachvollzogen, beispielsweise wie viele Ionen pro Sekunde durch den Kanal gehen. Die Ergebnisse von Simulationen und Experimenten stimmen nahezu perfekt überein“, berichtet Christoph Fahlke.

Als Nächstes wollen die Forscher ihre neuen Erkenntnisse benutzen, um Glutamat-Transporter gezielt pharmakologisch zu verändern. „Wir haben nun einen funktionellen Einblick in die molekularen Mechanismen gewonnen und kennen eine neue Struktur des Proteins. Dadurch haben wir die Grundlage geschaffen, um nach Wirkstoffen für Medikamente zu suchen“, blickt Jan-Philipp Machtens voraus. Solche Wirkstoffe könnten Störungen der Transporter- und Ionenkanalfunktion bei Erkrankungen wie Schlaganfall oder Epilepsie beseitigen. Bis zu einem marktreifen Medikament ist es aber noch ein langer Weg.

Originalveröffentlichung:
Mechanisms of Anion Conduction by Coupled Glutamate Transporters.
Jan-Philipp Machtens, Daniel Kortzak, Christine Lansche, Ariane Leinenweber, Petra Kilian, Birgit Begemann, Ulrich Zachariae, David Ewers, Bert L. de Groot, Rodolfo Briones und Christoph Fahlke.
Cell 160, Seiten 542-553, 29. Januar 2015. DOI: 10.1016/j.cell.2014.12.035
http://dx.doi.org/10.1016/j.cell.2014.12.035

Weitere Informationen:
Informationen zum Institute of Complex Systems, Bereich Zelluläre Biophysik (ICS-4)
http://www.fz-juelich.de/ics/ics-4/DE/Home/home_node.html

Ansprechpartner:
Prof. Christoph Fahlke
Tel.: 02461 61-3016
E-Mail: c.fahlke@fz-juelich.de

Pressekontakt:
Annette Stettien
Unternehmenskommunikation
Tel.: 02461 61-2388
E-Mail: a.stettien@fz-juelich.de

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-01-30-gluta…

Media Contact

Annette Stettien Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ultraleichte selbstglättende Spiegel

…erhöhen die Effizient hochmoderner Teleskope. Schon immer faszinierte den Menschen der Blick in den Sternenhimmmel und nicht minder faszinierend ist es, die Erde aus dem Weltraum zu betrachten. Möglich ist…

Überraschende Umkehr in Quantensystemen

Forschende haben topologisches Pumpen in einem künstlichen Festkörper aus kalten Atomen untersucht. Die Atome wurden mit Laserstrahlen gefangen. Überraschenderweise kam es zu einer plötzlichen Umkehr der Atome an einer Wand…

Magnetisch durch eine Prise Wasserstoff

Neue Idee, um die Eigenschaften ultradünner Materialien zu verbessern. Magnetische zweidimensionale Schichten, die aus einer oder wenigen Atomlagen bestehen, sind erst seit kurzem bekannt und versprechen interessante Anwendungen, zum Beispiel…

Partner & Förderer