Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Aufmerksamkeit das Orchester unserer Nervenzellaktivität dirigiert

06.09.2018

Studie an Rhesusaffen zeigt, wie unser Gehirn komplexe Signale verarbeitet

Stille im Konzertsaal. Der Dirigent hebt den Taktstock und die Streicher setzen ein. Sie spielen die ersten vier Takte von Mozarts „Eine Kleine Nachtmusik“. Alle zusammen spielen eine einzige Melodie, die wohl zu den bekanntesten der Musikwelt gehört. Danach teilen sich die Stimmen.


Zwei Nervenzellen im Gehirn eines Rhesusaffen, die mit einem gelben Fluoreszenzfarbstoff sichtbar gemacht wurden.

Foto: Michael Fortuna


Dr. Moein Esghaei ist Wissenschaftler in der Abteilung Kognitive Neurowissenschaften am DPZ.

Foto: Kevin Windolph

Verschiedene Streichinstrumente spielen getrennte Melodien und die „Kleine Nachtmusik“ wird so zu einem komplexen Kunstwerk. Neurowissenschaftler am Deutschen Primatenzentrum (DPZ) – Leibniz-Institut für Primatenforschung in Göttingen und des Institute for Research in Fundamental Sciences in Teheran, Iran, haben kürzlich in einer Studie mit Rhesusaffen herausgefunden, dass bei der visuellen Wahrnehmung in unserem Gehirn Nervenzellen die Aufgabe der Musiker übernehmen.

Üblicherweise sind dabei viele Zellen gemeinsam (synchron) aktiv, wenn sie einfache Reize aus unserer Umwelt verarbeiten. Die Forscher konnten zeigen, dass visuelle Aufmerksamkeit diese Nervenzellaktivität desynchronisiert und damit eine komplexere Informationsverarbeitung ermöglicht. Solche Erkenntnisse über die Wirkungsweise von Aufmerksamkeit im gesunden Zustand, liefern möglicherweise Hinweise auf Mechanismen, die neuronalen Erkrankungen wie der Aufmerksamkeitsdefizit-Hyperaktivitätsstörung (ADHS) oder Autismus zugrunde liegen (BMC Biology).

Die Neurowissenschaftler Moein Esghaei, Mohammad Reza Daliri und Stefan Treue haben die Aktivität einzelner Nervenzellen im Gehirn von Rhesusaffen gemessen. Mit sehr dünnen Mikroelektroden ermöglicht diese schmerzfreie Technik, die Aktivität größerer Gruppen von Nervenzellen gleichzeitig zu untersuchen, während die Tiere eine Wahrnehmungsaufgabe durchführen.

Die Aktivität dieser Nervenzellpopulationen kann man als kontinuierliche fluktuierende Signale über ein breites Frequenz-Spektrum in den Zellzwischenräumen messen. Das nennt man lokales Feldpotenzial. Die Signale der einzelnen Zellen (Aktionspotenziale) sind dabei an den Takt der Feldpotenziale gekoppelt.

Mit Hilfe neuartiger Signalverarbeitungstechniken fanden die Wissenschaftler heraus, dass visuelle Aufmerksamkeit die Aktivität einzelner Nervenzellen unabhängiger von den periodischen lokalen Feldpotenzialen macht.

„Die Aufmerksamkeit entkoppelt Nervenzellen voneinander, so dass einzelne Zellen unabhängiger aktiv sind und somit die Reizdarstellung erweitern, so wie das Spielen verschiedener Stimmen und Melodien es einem Orchester ermöglicht, komplexere Musik zu spielen“, erklärt Stefan Treue, Professor für Kognitive Neurowissenschaften an der Universität Göttingen und Leiter der Abteilung Kognitive Neurowissenschaften am Deutschen Primatenzentrum.

Die detaillierte Kenntnis darüber, wie das Gehirn von Rhesusaffen Aufmerksamkeit und andere komplexe kognitive Funktionen ermöglicht, lässt Rückschlüsse auf die Vorgänge im menschlichen Gehirn zu. Die synchronisierte Aktivität von Nervenzellen spielt eine entscheidende Rolle für die Wahrnehmung bei Menschen und anderen Primaten.

Zu verstehen, wie genau diese Synchronizität gesteuert wird, hilft nicht nur, die zugrunde liegenden neuronalen Mechanismen der bewussten Wahrnehmung besser zu verstehen, sondern könnte auch zu einem besseren Verständnis der physiologischen Defizite beitragen, die den Störungen der Aufmerksamkeitskontrolle und -wahrnehmung, wie bei ADHS, Autismus und Schizophrenie zugrunde liegen.

„Unsere Ergebnisse eröffnen ein neues Verständnis dafür, wie die Informationsverarbeitung in den lokalen neuronalen Schaltkreisen des Primatengehirns gesteuert wird“, kommentiert Moein Esghaei, Erstautor der Studie, die Ergebnisse. „In weiterführenden Studien wollen wir untersuchen, wie neuronale Fluktuationen erzeugt werden, um einzelne Nervenzellen zu steuern.“

Wissenschaftliche Ansprechpartner:

Prof. Dr. Stefan Treue
Tel.: +49 (0) 551 3851-118
E-Mail: streue@dpz.eu

Dr. Moein Esghaei
Tel.: +49 (0) 551 3851-344
E-Mail: aesghaei@dpz.eu

Originalpublikation:

Esghaei M, Daliri MR, Treue S (2018): Attention decouples action potentials from the phase of local field potentials in macaque visual cortical area MT. BMC Biology 16(1):86

Weitere Informationen:

http://medien.dpz.eu/webgate/keyword.html?currentContainerId=4521 - Druckfähige Bilder
https://www.dpz.eu/aktuelles/neuigkeiten/einzelansicht/news/wie-aufmerksamkeit-d... - Pressemitteilung auf der DPZ-Website

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics