Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Aufmerksamkeit das Orchester unserer Nervenzellaktivität dirigiert

06.09.2018

Studie an Rhesusaffen zeigt, wie unser Gehirn komplexe Signale verarbeitet

Stille im Konzertsaal. Der Dirigent hebt den Taktstock und die Streicher setzen ein. Sie spielen die ersten vier Takte von Mozarts „Eine Kleine Nachtmusik“. Alle zusammen spielen eine einzige Melodie, die wohl zu den bekanntesten der Musikwelt gehört. Danach teilen sich die Stimmen.


Zwei Nervenzellen im Gehirn eines Rhesusaffen, die mit einem gelben Fluoreszenzfarbstoff sichtbar gemacht wurden.

Foto: Michael Fortuna


Dr. Moein Esghaei ist Wissenschaftler in der Abteilung Kognitive Neurowissenschaften am DPZ.

Foto: Kevin Windolph

Verschiedene Streichinstrumente spielen getrennte Melodien und die „Kleine Nachtmusik“ wird so zu einem komplexen Kunstwerk. Neurowissenschaftler am Deutschen Primatenzentrum (DPZ) – Leibniz-Institut für Primatenforschung in Göttingen und des Institute for Research in Fundamental Sciences in Teheran, Iran, haben kürzlich in einer Studie mit Rhesusaffen herausgefunden, dass bei der visuellen Wahrnehmung in unserem Gehirn Nervenzellen die Aufgabe der Musiker übernehmen.

Üblicherweise sind dabei viele Zellen gemeinsam (synchron) aktiv, wenn sie einfache Reize aus unserer Umwelt verarbeiten. Die Forscher konnten zeigen, dass visuelle Aufmerksamkeit diese Nervenzellaktivität desynchronisiert und damit eine komplexere Informationsverarbeitung ermöglicht. Solche Erkenntnisse über die Wirkungsweise von Aufmerksamkeit im gesunden Zustand, liefern möglicherweise Hinweise auf Mechanismen, die neuronalen Erkrankungen wie der Aufmerksamkeitsdefizit-Hyperaktivitätsstörung (ADHS) oder Autismus zugrunde liegen (BMC Biology).

Die Neurowissenschaftler Moein Esghaei, Mohammad Reza Daliri und Stefan Treue haben die Aktivität einzelner Nervenzellen im Gehirn von Rhesusaffen gemessen. Mit sehr dünnen Mikroelektroden ermöglicht diese schmerzfreie Technik, die Aktivität größerer Gruppen von Nervenzellen gleichzeitig zu untersuchen, während die Tiere eine Wahrnehmungsaufgabe durchführen.

Die Aktivität dieser Nervenzellpopulationen kann man als kontinuierliche fluktuierende Signale über ein breites Frequenz-Spektrum in den Zellzwischenräumen messen. Das nennt man lokales Feldpotenzial. Die Signale der einzelnen Zellen (Aktionspotenziale) sind dabei an den Takt der Feldpotenziale gekoppelt.

Mit Hilfe neuartiger Signalverarbeitungstechniken fanden die Wissenschaftler heraus, dass visuelle Aufmerksamkeit die Aktivität einzelner Nervenzellen unabhängiger von den periodischen lokalen Feldpotenzialen macht.

„Die Aufmerksamkeit entkoppelt Nervenzellen voneinander, so dass einzelne Zellen unabhängiger aktiv sind und somit die Reizdarstellung erweitern, so wie das Spielen verschiedener Stimmen und Melodien es einem Orchester ermöglicht, komplexere Musik zu spielen“, erklärt Stefan Treue, Professor für Kognitive Neurowissenschaften an der Universität Göttingen und Leiter der Abteilung Kognitive Neurowissenschaften am Deutschen Primatenzentrum.

Die detaillierte Kenntnis darüber, wie das Gehirn von Rhesusaffen Aufmerksamkeit und andere komplexe kognitive Funktionen ermöglicht, lässt Rückschlüsse auf die Vorgänge im menschlichen Gehirn zu. Die synchronisierte Aktivität von Nervenzellen spielt eine entscheidende Rolle für die Wahrnehmung bei Menschen und anderen Primaten.

Zu verstehen, wie genau diese Synchronizität gesteuert wird, hilft nicht nur, die zugrunde liegenden neuronalen Mechanismen der bewussten Wahrnehmung besser zu verstehen, sondern könnte auch zu einem besseren Verständnis der physiologischen Defizite beitragen, die den Störungen der Aufmerksamkeitskontrolle und -wahrnehmung, wie bei ADHS, Autismus und Schizophrenie zugrunde liegen.

„Unsere Ergebnisse eröffnen ein neues Verständnis dafür, wie die Informationsverarbeitung in den lokalen neuronalen Schaltkreisen des Primatengehirns gesteuert wird“, kommentiert Moein Esghaei, Erstautor der Studie, die Ergebnisse. „In weiterführenden Studien wollen wir untersuchen, wie neuronale Fluktuationen erzeugt werden, um einzelne Nervenzellen zu steuern.“

Wissenschaftliche Ansprechpartner:

Prof. Dr. Stefan Treue
Tel.: +49 (0) 551 3851-118
E-Mail: streue@dpz.eu

Dr. Moein Esghaei
Tel.: +49 (0) 551 3851-344
E-Mail: aesghaei@dpz.eu

Originalpublikation:

Esghaei M, Daliri MR, Treue S (2018): Attention decouples action potentials from the phase of local field potentials in macaque visual cortical area MT. BMC Biology 16(1):86

Weitere Informationen:

http://medien.dpz.eu/webgate/keyword.html?currentContainerId=4521 - Druckfähige Bilder
https://www.dpz.eu/aktuelles/neuigkeiten/einzelansicht/news/wie-aufmerksamkeit-d... - Pressemitteilung auf der DPZ-Website

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 3D-Landkarten der Genaktivität
20.11.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Einblick in die dunkle Materie des Genoms
20.11.2019 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

20.11.2019 | Materialwissenschaften

Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?

20.11.2019 | Geowissenschaften

Gehen verändert das Sehen

20.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics