Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Algen pinke Pigmente herstellen

20.09.2019

Aus ein- und demselben Vorläufermolekül können Algen verschiedenfarbige Pigmente herstellen – ganz nach Bedarf in ihrer Umgebung. Wie die Synthese des pinken Farbstoffs Phycoerythrobilin im Detail abläuft, konnte ein Team der Fakultät für Biologie und Biotechnologie der Ruhr-Universität Bochum (RUB) und der Technischen Universität Kaiserslautern zeigen. Die Forscherinnen und Forscher fanden heraus, dass ein Schlüsselenzym die Bindung eines Substrats nur in einer unerwarteten Orientierung zulässt und somit für die entsprechende Farbe sorgt.

Das Forschungsteam berichtet im Journal of Biological Chemistry vom 20. September 2019. Die Ergebnisse wurden für das Titelbild der Zeitschrift ausgewählt.


Pigmente mit großer Farbvielfalt

Für das Farbspiel von Algen sind natürliche Pigmentmoleküle verantwortlich, die je nach Umgebung gezielt von den Organismen hergestellt werden. Erst mit ihrer Hilfe können die Algen Fotosynthese betreiben.

Vor allem Cyanobakterien (früher Blaualgen genannt), Rotalgen und sogenannte Cryptophyten nutzen dazu Biline. Anders als der bekannte grüne Blattfarbstoff Chlorophyll sind Biline Pigmentmoleküle mit großer Farbvielfalt. Biliverdin entsteht durch enzymatisches Aufschneiden der Ringstuktur von Häm und dient als Vorläufer für alle weiteren Biline.

In den nächsten Schritten werden Elektronen und Protonen gezielt an verschiedenen Positionen der Zwischenprodukte angelagert. „Faszinierend dabei ist, dass strukturell sehr ähnliche Enzyme, sogenannte Bilinreduktasen, verschiedenfarbige Pigmente generieren können“, so Johannes Sommerkamp aus der Arbeitsgruppe von Prof. Dr. Eckhard Hofmann an der RUB. „Noch verstehen wir nicht richtig, wie diese Kontrolle der chemischen Reaktionen erfolgt.“

Johannes Sommerkamp hat speziell die Synthese des pinkfarbenen Phycoerythrobilin untersucht. „Phycoerythrobilin wird in Algen normalerweise in zwei Schritten von zwei verwandten Enzymen synthetisiert. Die Struktur des Enzyms für den ersten Schritt konnten wir schon vor einigen Jahren aufklären, aber wir konnten damit nicht verstehen, warum das Enzym für den zweiten Schritt so spezifisch arbeitet“, so Eckhard Hofmann.

Räumliche Struktur gibt Reaktion vor

Johannes Sommerkamp gelang es jetzt, die dreidimensionale Raumstruktur des zweiten Enzyms aus der Cryptophyte Guillardia theta zu entschlüsseln. Er nutzte dafür die Röntgenstrukturanalyse, bei der zunächst Kristalle des Enzyms gezüchtet werden, um diese dann mit Röntgenstrahlung zu untersuchen.

Auf Grundlage dieser Daten kann dann ein Modell des Enzyms mit atomarer Auflösung erstellt werden. Dabei fanden die Forscher eine unerwartete Orientierung des Vorläuferpigmentes in der Bindetasche, und eine katalytisch wichtige Aminosäure, die eine zentrale Rolle bei der Steuerung der Reaktivität einnimmt.

„Wenn wir uns jetzt die räumliche Struktur der Bindetasche ansehen, passt das Substrat nur in dieser Orientierung. Das legt dann auch fest, wie die Reaktion abläuft“, so Eckhard Hofmann.

Förderung

Die Arbeiten sind Teil eines von der Deutschen Forschungsgemeinschaft (DFG) geförderten Gemeinschaftsprojekts mit Prof. Dr. Nicole Frankenberg-Dinkel von der Technischen Universität Kaiserslautern. Zusammen hatten die Gruppen auch schon ein Protein untersucht, das die Reaktivität von beiden Enzymen in einem vereint.
Johannes Sommerkamp ist Mitglied in der DFG-Graduiertenschule GRK
2341 "Microbial substrate conversion (Micon)". https://www.ruhr-uni-bochum.de/micon/

Originalveröffentlichung

Johannes A. Sommerkamp, Nicole Frankenberg-Dinkel, Eckhard Hofmann: Crystal structure of the first eukaryotic bilin reductase GtPEBB reveals a flipped binding mode of dihydrobiliverdin, in: Journal of Biological Chemistry, 2019, DOI: 10.1074/jbc.RA119.009306

Pressekontakt

Prof. Dr. Eckhard Hofmann
Röntgenstrukturanalyse an Proteinen
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 24463
E-Mail: eckhard.hofmann@rub.de

Prof. Dr. Nicole Frankenberg-Dinkel
Fachbereich Biologie
Abteilung Mikrobiologie
Technische Universität Kaiserslautern
Tel.: 0631 205 2353
E-Mail: nfranken@bio.uni-kl.de

Info: Cryptophyten
Cryptophyten sind einzellige eukaryotische Algen, die zur Fotosynthese befähigt sind und einen wesentlichen Teil des Phytoplanktons im Meer ausmachen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Eckhard Hofmann
Röntgenstrukturanalyse an Proteinen
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 24463
E-Mail: eckhard.hofmann@rub.de
Prof. Dr. Nicole Frankenberg-Dinkel
Fachbereich Biologie
Abteilung Mikrobiologie
Technische Universität Kaiserslautern
Tel.: 0631 205 2353
E-Mail: nfranken@bio.uni-kl.de

Originalpublikation:

Johannes A. Sommerkamp, Nicole Frankenberg-Dinkel, Eckhard Hofmann: Crystal structure of the first eukaryotic bilin reductase GtPEBB reveals a flipped binding mode of dihydrobiliverdin, in: Journal of Biological Chemistry, 2019, DOI: 10.1074/jbc.RA119.009306

Weitere Informationen:

http://www.jbc.org/content/early/2019/07/31/jbc.RA119.009306

Meike Drießen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Die wahrscheinlich kleinsten Stabmagnete der Welt
17.10.2019 | Friedrich-Schiller-Universität Jena

nachricht Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination
17.10.2019 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die wahrscheinlich kleinsten Stabmagnete der Welt

17.10.2019 | Biowissenschaften Chemie

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungsnachrichten

Additive Fertigung von Hartmetall-Schneidwerkzeugen

17.10.2019 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics