Widerstand ist zwecklos – Verringerte Ligninsynthese durch ein ausgeknipstes Gen

Holzzellen im Mikroskop: Lignineinlagerungen imprägnieren die Leitungsbahnen und helfen der Pflanze, aufrecht zu stehen. (Quelle: © iStockphoto.com/ BeholdingEye)<br>

Lignin ist ein wichtiger Stoff für Gefäßpflanzen, ohne den sie nicht existieren können. Es wird in die Zellwände eingelagert, so dass Landpflanzen Stabilität für das Wachstum erlangen. Lignine dichten zudem Zellwände ab und ermöglichen so den Wassertransport in den dafür vorgesehenen Leitungsbahnen (Xylem).

Neben dem Stoff Chitin, der tierische Körperstrukturen stabilisiert, und Cellulose ist Lignin der am meisten produzierte Stoff auf der Welt, es werden etwa 20 Milliarden Tonnen pro Jahr gebildet.

Trotzdem ist Lignin bei der Verarbeitung von Pflanzenmaterial für Biokraftstoffe, Papierherstellung und andere industrielle Verfahren ein nicht so gerne gesehener Stoff. Er macht die Zellwände widerstandsfähig gegen dem Abbau (zum Beispiel mit Enzymen bei der Umsetzung zu Glucose) und verringert so die Kraftstoffausbeute. Die chemische oder technische Entfernung von Lignin ist aufwändig und teuer. Daher besteht schon länger ein Interesse daran, die Ligninmenge beim Pflanzenwachstum zu beschränken. Bisher gab es dabei Probleme, weil die Pflanzen durch den Ligninmangel Entwicklungsstörungen wie Zwergwuchs aufwiesen und dadurch wiederum weniger Biomasse produzierten. Wissenschaftler haben jetzt herausgefunden, wie man den Ligningehalt in Pflanzenzellen ohne große Wachstumseinbußen verringern kann.

Ein neues Enzym

Das Enzym Caffeoyl-Shikimat-Esterase (CSE) wurde erstmals im Zusammenhang mit oxidativem Stress in Pflanzenzellen beschrieben. In ihrer neuen Studie beobachteten die Wissenschaftler jetzt, dass das Enzym zusammen mit anderen Enzymen der Lignin-Biosynthese exprimiert wird, obwohl es bisher keine bekannte Funktion in diesem Syntheseweg hatte. Um den Zweck des Enzyms zu erkunden, konstruierten die Forscher in der Ackerschmalwand (Arabidopsis thaliana) zwei Mutanten, die Veränderungen am CSE-exprimierenden Gen besaßen: In der Mutante cse-1 wurde die Genexpression verringert (Knock-down), in der Mutante cse-2 wurde das Gen ausgeschaltet (Knock-out).

Bei der cse-2 Mutante traten Zellen mit geschwächten Zellwandstrukturen. Die Pflanzen enthielten 36 Prozent weniger lösliches Lignin, als die Wildtypflanzen. Die Mutanten zeigten jedoch auch um 37 Prozent schmalere und um 42 Prozent schwächere Blütenstiele als der Wildtyp. Bei den Mutanten, bei denen CSE nur herunter reguliert wurde, gab es keine Einbußen bei der Entwicklung.

Eine Testreihe mit unterschiedlichen Substanzen, zeigte, dass CSE als Substrat vor allem die Substanz Caffeoyl Shikimat umsetzt. Caffeoyl Shikimat ist ein bekanntes Zwischenprodukt in der Lignin-Biosynthese. Das Enzym CSE hat hier offenbar eine wichtige Funktion.

Zwei Wege führen zum Ziel

Allerdings zeigten weitere Versuche, dass der Umbau von Caffeoyl Shikimat zu Caffeoyl-CoA, wie er in der bisher bekannten Lignin-Synthese vorkommt, mit CSE nicht zu bewerkstelligen ist, wohl aber mit einem anderen, in der Lignin-Biosynthese wichtigen Enzym, der Hydroxycinnamoyl-CoA:Shikimat/Quinat Hydroxycinnamoyltransferase (HCT). Daher scheint Caffeoyl Shikimat sowohl für CSE als auch für HCT als Substrat zu dienen.

Bisher war man davon ausgegangen, dass Caffeoyl Shikimat ausschließlich von der HCT direkt zu Caffeoyl-CoA umgesetzt wird. Daher vermuten die Wissenschaftler, dass es einen alternativen Syntheseweg geben muss, der über das Enzym CSE verläuft. Darauf weist auch der hohe Gehalt an Caffeoyl Shikimat in der Knock-out-Variante hin, der von der HCT allein offenbar nur langsam umgesetzt wurde. Da aber trotzdem ein Rest Lignin in der cse2-Mutante vorhanden ist, scheint auch die HCT allein etwas Lignin zustande zu bringen, kann aber den Verlust der CSE nicht kompensieren. Hier vermuten die Forscher einen Schaltpunkt, um die Lignin-Konzentration in der Pflanze zu regulieren.

Weniger Lignin, mehr Zucker

Um festzustellen, inwieweit Pflanzen mit geringerem Ligningehalt bei der Verzuckerung besser verwertet werden können, untersuchten die Forscher die Umsetzung von Cellulose zu Glucose mit Pflanzenmaterial der cse-Mutanten und mit dem Wildtyp. Sie stellten fest, dass die Mutanten mit weniger Lignin (cse-2) die höchsten bisher in Mutanten gemessenen Umsetzungsraten aufwiesen: Die Cellulose der cse-2 Arabidopsis Pflanzen wurde mit der vierfachen Effizienz verzuckert, als es bei den Wildtyp-Pflanzen der Fall war.

Daraus schlussfolgern die Forscher, dass das Enzym CSE ein wichtiger Schlüssel sein könnte, um die Widerstandskraft von Zellwänden bei der Verarbeitung zu schwächen. CSE-ähnliche Enzyme entdeckten die Wissenschaftler in verschiedenen Pflanzenarten, darunter Pappeln, Eukalyptus und der amerikanischen Rutenhirse. CSE-Mutanten mit weniger Lignin in den Zellwänden könnten eine höhere Ausbeute bei der Verzuckerung von Cellulose bieten, die wiederum für Biokraftstoffe oder die industrielle Produktion verwendet werden können. Dafür müssten nach Meinung der Forscher aber zunächst der die von ihnen entdeckten Ergebnisse weitergehend untersucht und der bisher bekannte Verlauf der Lignin-Biosynthese entsprechend erweitert werden.

Quelle:
Vanholme, R. et al (2013): Caffeoyl Shikimate Esterase (CSE) is an enzyme in the lignin biosynthetic pathway. In: Science, (Published Online 15. August 2013). DOI.10.1126/science.1241602.

Media Contact

Vanholme, R. et al Pflanzenforschung.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer