Wichtiger Regulator des Immunsystems entschlüsselt

Querschnitt durch eine Plasmazelle (schematische Darstellung) IMP

Unsere Umgebung ist voll von schädlichen Mikroorganismen und Viren. Wir überleben diese täglichen Angriffe nur dank unseres Immunsystems, das diese Eindringlinge auf vielfältige Art unschädlich machen kann. Bei der Immunabwehr spielen die Plasmazellen eine zentrale Rolle, da sie Infektionen bekämpfen und langfristigen Schutz vor Krankheitserregern vermitteln.

Plasmazellen sind weiße Blutkörperchen, die aus B-Zellen hervorgehen und die ausführenden Organe der humoralen Immunantwort darstellen. Ihre Funktion ist die Produktion von Antikörpern, die in großer Menge an das Blut abgegeben werden und somit schädliche Eindringlinge im ganzen Körper neutralisieren können.

Eine aktive Plasmazelle kann bis zu 10 000 Antikörpermoleküle in der Sekunde produzieren und ins Blut einschleusen. Diese Höchstleistung ist sogar im Mikroskop sichtbar: die Zellen sind vollgepackt mit Membran-umhüllten Bläschen (dem endoplasmatischen Retikulum), die für die Entstehung und Sekretion der Antikörper verantwortlich sind.

Damit Plasmazellen entstehen, müssen B-Zellen durch körperfremde Stoffe (Antigene) aktiviert werden. Die zunächst gebildeten Plasmablasten wandern in das Knochenmark und überdauern dort als äußerst langlebige Plasmazellen viele Jahre bis Jahrzehnte. Auf diesem immunologischen Gedächtnis der Plasmazellen beruht auch der anhaltende Schutz von Impfungen.

Zentrale Rolle von Blimp1 bei der Plasmazellentwicklung

Wissenschaftler kennen die Entstehung und Aufgaben von Plasmazellen sehr genau und schon recht lange. Doch wie diese Prozesse eingeleitet und reguliert werden, war im Detail bisher nicht bekannt. Ein Team um Meinrad Busslinger, Senior Scientist und stellvertretender Direktor am Forschungsinstitut für Molekulare Pathologie (IMP) in Wien, fand nun einen wichtigen Schlüssel zur Funktion von Plasmazellen.

In einem fünfjährigen Projekt konnten die Forscher die Wirkungsweise des Faktors Blimp1 als zentralen Regulator der Plasmazellentwicklung entschlüsseln. Das Wissenschaftsjournal Nature Immunology veröffentlicht heute die Ergebnisse des Wiener Teams sowie eine zweite Arbeit australischer Forscher, deren Projekt zum Teil auf den Daten aus Wien aufbaut.

In detailreichen Studien an Mauszellen wurden am IMP alle Gene identifiziert, die an der Bildung von Plasmazellen beteiligt sind. Die Autorin Martina Minnich, auf deren Doktorarbeit die Publikation beruht, beschreibt das Resultat:

“Wir fanden, dass mehr als die Hälfte dieser Gene von Blimp1 reguliert werden. Diesem Faktor kommt somit eine zentrale Bedeutung zu. Erstmals konnten wir auch zeigen, dass Blimp1 Gene nicht nur ausschalten, sondern auch einschalten kann. Dies ist eine wichtige Erkenntnis für das Verständnis der Plasmazellentwicklung.“

Meinrad Busslinger fasst die Ergebnisse so zusammen: „Der Faktor Blimp1 kontrolliert die meisten der essenziellen Funktionen von Plasmazellen. Er steuert unter anderem ihre Mobilität und Wanderung in das Knochenmark, die enorme Vergrößerung des endoplasmatischen Retikulums und die Hochregulierung der Antikörperproduktion. Ohne Blimp1 gibt es keine Antikörper-vermittelte Immunität.“

Keine Antikörper ohne Blimp1

Während Blimp1 für die Entstehung der Plasmazellen essenziell ist, überleben ausgereifte Plasmazellen auch ohne diesen Faktor. Sie sind jedoch nicht funktionstüchtig, da sie ohne Blimp1 keine Antikörper produzieren können. Dieses unerwartete Resultat ist das Ergebnis von Studien am Walter and Eliza Hall Institute (WEHI) in Melbourne, Australien. Stephen Nutt, Hauptautor dieser zweiten Studie, arbeitete mit dem IMP-Team zusammen und konnte somit bei seinem Projekt auf Daten aus Wien zugreifen.

Das Verständnis der vielfältigen Funktionen von Blimp1 ist nicht nur für die Immunabwehr, sondern auch für andere medizinische Fragestellungen äußerst relevant. Mutationen im Blimp1-Gen können etwa dazu führen, dass B-Zellen in ihrer Entwicklung blockiert werden und so zur Entstehung eines bösartigen Tumors, des sogenannten Lymphoms, beitragen. Zudem kommt es nicht selten vor, dass sich normalerweise ruhende Plasmazellen unkontrolliert vermehren und zu einem Plasmazell-Tumor oder multiplen Myelom entwickeln.

Ein weiterer Aspekt des Immunsystems, der medizinisch von höchster Bedeutung ist, sind die vielfältigen Autoimmun-Erkrankungen. Schwere Schädigungen von Organen und Geweben, wie etwa beim systemischen Lupus erythematodes (SLE), sind die Folge einer fehlgeleiteten Immunreaktion, bei der sich die Antikörper von Plasmazellen gegen das eigene Gewebe richten.

Laut Meinrad Busslinger haben „die veröffentlichen Entdeckungen tiefen Einblick in das Innenleben der Plasmazelle ermöglicht. Allerdings haben sie auch neue interessante Fragen aufgezeigt, denen wir in unserer zukünftigen Forschung nachgehen werden.“

Originalpublikationen

Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation. Martina Minnich et al. Nature Immunology online, 18. Januar 2016; doi:10.1038/ni.3349

Blimp1 controls plasma cell function through regulation of immunoglobulin secretion and the unfolded protein response. Julie Tellier et al. Nature Immunology online, 18. Januar 2016; 10.1038/ni.3348

Über das IMP
Das Forschungsinstitut für Molekulare Pathologie betreibt in Wien biomedizinische Grundlagenforschung. Hauptsponsor ist der internationale Unternehmensverband Boehringer Ingelheim. Mehr als 200 Forscherinnen und Forscher aus über 30 Nationen widmen sich am IMP der Aufklärung grundlegender molekularer und zellulärer Vorgänge, um komplexe biologische Phänomene im Detail zu verstehen. Die bearbeiteten Themen umfassen die Gebiete der Zell- und Molekularbiologie, Neurobiologie, Krankheitsentstehung sowie Bioinformatik. Das IMP ist Gründungsmitglied des Vienna Biocenter, Österreichs Leuchtturm im internationalen Konzert molekularbiologischer Top-Forschung.

Pressekontakt:
Heidemarie Hurtl
IMP Communications
Forschungsinstitut für Molekulare Pathologie
Dr. Bohr-Gasse 7
A 1030 Wien
T: +43 1 79730 3625
E: hurtl(at)imp.ac.at

http://www.imp.ac.at/news/press-releases
http://www.nature.com/ni/journal/vaop/ncurrent/pdf/ni.3349.pdf

Media Contact

Dr. Heidemarie Hurtl idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Klimakrise gefährdet alpine Ökosysteme

Gebirge sind vom Klimawandel besonders betroffen: Sie erwärmen sich schneller als das Flachland. Mit der Erwärmung schwindet die Schneedecke und Zwergsträucher dringen in höhere Lagen vor – mit starken Auswirkungen…

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Partner & Förderer