Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wichtiger enzymatischer Schritt der Kokain-Synthese aufgeklärt

06.06.2012
Enzymreaktion in Kokablättern erlaubt Einblick in die Evolution der Alkaloid-Synthese

Kokain gehört zu den geläufigsten Drogen weltweit. Bislang war jedoch nicht bekannt, wie Pflanzen das Alkaloid bilden. Wissenschaftler des Max-Planck-Instituts für chemische Ökologie, Jena, haben nun eine der Schlüsselreaktionen der Kokain-Biosynthese aufgeklärt.


Kokapflanze (Erythroxylum coca) und die molekulare Struktur des Kokains (grau: Kohlenstoff, blau: Stickstoff, rot: Sauerstoff, weiß: Wasserstoff). Max-Planck-Institut für chemische Ökologie/ D’Auria, Jirschitzka


Gewebeschnitt durch eine junge, noch um den jungen Spross gewickelte Blattanlage (Balken: 0,1 Millimeter). Die grün gefärbten Bereiche (Immunoblot) markieren das dort in großer Menge vorhandene Enzym MecgoR, das den vorletzten Schritt der Kokain-Biosynthese katalysiert. Max-Planck-Institut für chemische Ökologie/ D’Auria, Jirschitzka

Sie isolierten aus Blättern der südamerikanischen Kokapflanze ein Enzym, das zur Familie der Aldo-Keto-Reduktasen gehört. Dessen Funktion und molekulare Struktur eröffnet einen neuen Blick in die Evolution pflanzlicher Tropan-Alkaloid-Stoffwechselwege. (PNAS, Early Edition, 4. Juni 2012, DOI: 10.1073/pnas.1200473109)

Alkaloide begegnen dem Menschen jeden Tag

Alkaloide sind natürliche, stickstoffhaltige Verbindungen, die auf den menschlichen Organismus unterschiedlich stark wirken. Dazu gehören bekannte Substanzen wie Atropin, Koffein, Nikotin, Chinin, Morphin, Strychnin und Kokain. Das Pupillen-erweiternde Atropin und das Rauschgift Kokain zählen zur Gruppe der so genannten Tropan-Alkaloide, die sich chemisch durch zwei miteinander verbundene 5- und 7-gliedrige Ringe auszeichnen. Kokapflanzen wurden schon vor rund 8000 Jahren von südamerikanischen Völkern kultiviert, die die Kokablätter wegen ihrer stimulierenden und hungerstillenden Eigenschaft anbauten.

Im Pflanzenreich dient die Biosynthese von Tropanen und anderen alkaloiden Stoffen meist der Abwehr von Fraßfeinden und anderen Schädlingen. Sieben Pflanzenfamilien, in denen Tropan-Alkaloide vorkommen, sind bekannt, darunter die Kreuzblütler (Brassicaceae), Wolfsmilch- (Euphorbiaceae), Nachtschatten- (Solanaceae) und Rotholzgewächse (Erythroxylaceae).

Der Verwandtschaftsgrad zwischen diesen Familien ist eher klein. Man nimmt an, dass der letzte gemeinsame Vorfahre der Rotholz- und Nachschattengewächse vor rund 120 Millionen Jahren gelebt hat. Wie ähnlich sind sich die Tropan-Alkaloid-Biosynthesewege in diesen Familien? Gibt es einen ursprünglichen „Kardinalweg“, der im weiteren Verlauf der Evolution in den meisten anderen Pflanzenfamilien verloren gegangen ist? Oder wurde die Tropan-Alkaloid-Biosynthese mehrmals parallel und unabhängig voneinander erfunden?

Atropin und Kokain: zwei Tropan-Alkaloide, zwei Pflanzenarten, zwei verschiedene Enzyme

Die Kokapflanze mit dem wissenschaftlichen Namen Erythroxylum coca aus der Familie der Rotholzgewächse und die Kokainbiosynthese wurden seit rund 40 Jahren nicht mehr untersucht. Jedoch ist ein entscheidender Schritt der Biosynthese von Atropin, einem kokainverwandten Tropan-Alkaloid, das in der Tollkirsche, einem Nachtschattengewächs, vorkommt, bekannt. Zur Atropin-Biosynthese bedarf es der Umwandlung einer Ketogruppe in einen Alkoholrest, der dann im allerletzten chemischen Schritt verestert wird. Die Umwandlung der Ketogruppe wird in der Tollkirsche durch ein Enzym aus der Gruppe der Dehydrogenasen/Reduktasen (short-chain dehydrogenase/reductase − SDR) katalysiert. Zu diesen Enzymen gehören auch viele Alkohol-abbauende Dehydrogenasen in tierischen Organismen.
Um das entsprechende Enzym im Kokain-Biosyntheseweg zu finden, suchte Jan Jirschitzka, Doktorand in der Gruppe um John D’Auria, Projektleiter in der Abteilung Biochemie des Max-Planck-Instituts für chemische Ökologie, daher im Genom der Kokapflanze nach SDR-ähnlichen Gensequenzen. Diese wurden kloniert, exprimiert und auf Enzymaktivität getestet. Da hierbei nicht das Vorläufermolekül des Kokains gebildet wurde, blieb dem Wissenschaftler nur der klassische biochemische Weg: Aus Extrakten von Kokablättern reicherte er die dort enthaltene Enzymaktivität an, reinigte das entsprechende Protein und isolierte nach Teilsequenzierung des Polypeptids das dazugehörige Gen.

Kokain in jungen Blättern, Atropin in Wurzeln

„Wir erhielten zwei interessante Ergebnisse“, so Jonathan Gershenzon, Direktor am Institut. „Die zur Atropin-Synthese analoge chemische Reaktion − die Umwandlung der Ketogruppe zu einem Alkoholrest − erfolgt in Kokapflanzen durch ein ganz anderes Enzym als im Nachtschattengewächs, nämlich durch eine Aldo-Keto-Reduktase, die wir Methylecgonon-Reduktase (MecgoR) genannt haben.“ Aldo-Keto-Reduktasen sind in Pflanzen bekannt und finden sich auch in Säugetieren, Amphibien, Hefe, Einzellern und Bakterien. Sie sind beispielsweise in die Bildung von Steroidhormonen eingebunden. Und zweitens: Sowohl das MecgoR-Gen als auch das MecgoR-Enzym sind besonders aktiv in ganz jungen Blättern der Kokapflanze, jedoch nicht in Wurzeln. Atropin hingegen wird ausschließlich in der Wurzel der Tollkirsche synthetisiert und nachfolgend in die grünen Organe transportiert. Auf der Grundlage all dieser Ergebnisse folgern die Wissenschaftler, dass der Tropan-Alkaloid-Stoffwechsel in Kokapflanzen und der Tollkirsche vollkommen unabhängig voneinander entstanden sind.
Mit der Aufklärung des durch das MecgoR-Enzym katalytischen Schrittes der Kokain Synthese sind die Forscher einen enormen Schritt vorangekommen. Nun widmen sie sich unter anderem dem Speicherort des Kokains im jungen grünen Blattgewebe, wo es in einer sehr hohen Konzentration akkumuliert: Kokain kann bis zu zehn Prozent Prozent des Trockengewichts von jungen Blättern ausmachen, eine Menge, die kaum von anderen Alkaloiden in Pflanzen erreicht wird. [JWK]

Originalartikel:

Jan Jirschitzka, Gregor W. Schmidt, Michael Reichelt, Bernd Schneider, Jonathan Gershenzon, John C. D´Auria: Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proceedings of the National Academy of Sciences USA, Early Edition, 4. Juni 2012, DOI: 10.1073/pnas.1200473109

Weitere Informationen von:

Dr. John C. D’Auria, dauria@ice.mpg.de, +49 3641 57 1335

Bildmaterial:

Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de oder via http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Weitere Informationen:
http://www.ice.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kühlen nach Art der Pflanzen
18.04.2019 | Westfälische Hochschule

nachricht Kontaktlinsen mit Medizin und Zucker
17.04.2019 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Neues „Baustein-Konzept“ für die additive Fertigung

Volkswagenstiftung fördert Wissenschaftler aus dem IPF Dresden bei der Erkundung eines innovativen neuen Ansatzes im 3D-Druck

Im Rahmen Ihrer Initiative „Experiment! - Auf der Suche nach gewagten Forschungsideen“
fördert die VolkswagenStiftung ein Projekt, das von Herrn Dr. Julian...

Im Focus: Vergangenheit trifft Zukunft

autartec®-Haus am Fuß der F60 fertiggestellt

Der Hafen des Bergheider Sees beherbergt seinen ersten Bewohner. Das schwimmende autartec®-Haus – entstanden im Rahmen eines vom Bundesministerium für Bildung...

Im Focus: Hybrid-Neuronen-Netzwerke mit 3D-Lithografie möglich

Netzwerken aus wenigen Neuronenzellen können gezielt künstliche dreidimensionale Strukturen vorgegeben werden. Sie werden dafür elektronisch verschaltet. Dies eröffnet neue Möglichkeiten, Fehler in neuralen Netzwerken besser zu verstehen und technische Anwendungen mit lebenden Zellen gezielter zu steuern. Dies stellt ein Team aus Forschenden aus Greifswald und Hamburg in einer Publikation in der Fachzeitschrift „Advanced Biosystems“ vor.

Eine der zentralen Fragen der Lebenswissenschaften ist, die Funktionsweise des Gehirns zu verstehen. Komplexe Abläufe im Gehirn ermöglichen uns, schnell Muster...

Im Focus: Was geschieht im Körper von ALS-Patienten?

Wissenschaftler der TU Dresden finden Wege, um das Absterben von Nervenzellen zu verringern und erforschen Therapieansätze zur Behandlung von ALS

Die Amyotrophe Lateralsklerose (ALS) ist eine unheilbare Erkrankung des zentralen Nervensystems. Nicht selten verläuft ALS nach der Diagnose innerhalb...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz: Lernen von der Natur

17.04.2019 | Veranstaltungen

Mobilität im Umbruch – Conference on Future Automotive Technology, 7.-8. Mai 2019, Fürstenfeldbruck

17.04.2019 | Veranstaltungen

Augmented Reality und Softwareentwicklung: 33. Industrie-Tag InformationsTechnologie (IT)²

17.04.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Irdischer Schutz für außerirdisches Metall

18.04.2019 | Verfahrenstechnologie

Erster astrophysikalischer Nachweis des Heliumhydrid-Ions

18.04.2019 | Physik Astronomie

Radioteleskop LOFAR blickt tief in den Blitz

18.04.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics