Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Nichtimmunzellen Krebszellen töten

14.11.2017

ETH-Forscher haben normale Körperzellen zu Immunzellen umprogrammiert. Dadurch können diese Krebszellen erkennen und abtöten.

Eine Hauptwaffe des Immunsystems sind T-Zellen. Diese erkennen virusbefallene Körperzellen und lösen deren programmierten Zelltod aus, was auch das Virus tötet. Bei Tumorzellen jedoch versagen die T-Zellen, da sie diese nicht als fremd erkennen und deshalb nicht eliminieren können.


So funktionieren die künstlichen T-Zellen.

ETH Zürich

Seit Kurzem setzen Ärzte allerdings nun im Labor veränderte T-Zellen gegen Tumore ein. Diesen mit zusätzlichen Funktionen ausgestatteten Immunzellen entgehen die Krebszellen nicht: Sie können Krebszellen aufspüren und abtöten. Doch diese Immunzelltherapie kann starke Nebenwirkungen haben, und die Herstellung der veränderten T-Zellen ist technisch anspruchsvoll.

Ein Team von Forschern um ETH-Professor Martin Fussenegger am Departement Biosysteme in Basel schlägt nun einen neuartigen, einfacheren Ansatz vor, um therapeutisch nutzbare synthetische Designer-Zellen zur Bekämpfung von Tumoren herzustellen: Die Forscher haben Nierenzellen und (Fett-)Stammzellen des Menschen drei zusätzliche Komponenten eingebaut und dadurch in synthetische T-Zell-ähnliche Designer-Zellen verwandelt.

Eine der Komponenten der synthetischen T-Zellen sind molekulare Antennen, die weit aus der Zelle herausragen. In der Zellmembran verankert sind zudem Antikörper mit spezifischen Andockstellen, welche Zielstrukturen der entsprechenden Krebszelle erkennen und an sie binden. Die dritte Komponente ist ein Gennetzwerk, das einen Molekülkomplex erzeugt.

Dieser Molekülkomplex besteht aus einem molekularen «Raketenkopf», der die Membran der Zielzelle durchdringt. An ihn gekoppelt ist ein Konvertermolekül, das im Inneren der Krebszelle einen Antitumor-Wirkstoff «scharf» macht.

Die Vorläufersubstanz dieses Wirkstoffs muss dem System von aussen beigefügt werden. Krebszellen nehmen diese Substanz auf und das Konvertermolekül wandelt die inaktive in eine aktive Form um. Die Krebszelle platzt, der Wirkstoff wird freigesetzt und eliminiert in der «Todeszone» rund um die synthetische T-Zelle weitere Tumorzellen. «Dieser Bystander-Effekt macht unsere synthetischen T-Zellen noch effektiver», sagt Fussenegger.

Mechanischer Auslöser

Der Mechanismus, welche die Kaskade bis zur Tötung der Krebszelle in Gang setzt, ist neu und funktioniert physikalisch: Indem die synthetische T-Zelle ihre Zielzelle nahe an sich heranzieht, verbiegen sich die Antennenproteine. Dadurch verliert die Verankerung der Antenne, die in die Zelle hineinragt, den Kontakt zu einem molekularen Schalter, den sie bis dahin blockiert. Als Reaktion auf den «An»-Befehl setzt sich eine Signalkaskade in Gang, welche die Produktion des Molekülkomplexes anschaltet.

Die neuartigen künstlichen T-Zellen haben gegenüber heutigen Krebstherapien einige Vorteile. Während bei Chemotherapien der Körper mit Wirkstoffen geflutet wird, um wenig wählerisch möglichst viele sich schnell teilende Zellen abzutöten, braucht es hier nur wenige künstliche T-Zellen. Zudem sind diese nur lokal und sehr gezielt im Einsatz.

«Unsere neuartigen T-Zellen erkennen und töten metastasierende Krebszellen zu einem sehr frühen Zeitpunkt, an dem andere Therapien nicht greifen», sagt Fussenegger. Ein weiterer Vorteil der Methode: «Die künstlichen T-Zellen arbeiten völlig unabhängig vom Immunsystem, so dass dieses weiter voll funktionstüchtig bleibt und weniger Nebenwirkungen zu erwarten sind.»

Mit Baukastensystem zur Generalisierung

Das System ist überdies baukastenartig erweiterbar. Die Forscher können die künstlichen Killerzellen mit verschiedenartigen Andockstellen, die an andere Krebszelltypen binden, ausstatten. Für die vorliegende Arbeit, die in Nature Chemical Biology erschienen ist, verwendeten die Forscher Andockstellen, die ausschliesslich einen bestimmten Typ von Brustkrebszellen erkennen. «Mit dieser Technik erzielen wir eine enorme Generalisierung, die mit den aktuell in Krebstherapien verwendeten echten T-Zellen nicht zu erreichen ist», betont Fussenegger.

Noch ist nicht bekannt, ob und wie wie dieses System im Menschen funktionieren wird. Die ETH-Forscher haben ihre neuen Zellen bislang erst in Zellkulturen getestet. «Unser neues System ist momentan weit von einer therapeutischen Anwendung entfernt», sagt der ETH-Professor. «Aber ich denke, wir haben eine neue Front gegen Krebs eröffnet.»

Literaturhinweis

Kojima R, Scheller L, Fussenegger M. Nonimmune cells equipped with T-cell-receptorlike signaling for cancer cell ablation. Nature Chemical Biology, published online 13th Nov. 2017. doi: 10.1038/nchembio.2498

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2017/11/wenn-nicht...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Berichte zu: Andockstellen ETH Krebszelle Krebszellen Molekülkomplex T-Zelle Tumorzellen Zielzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics