Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Nervenzellen miteinander reden – und Forscher zusehen

01.11.2016

Neurobiologen können die Aktivität von Nervenzellen im Mäusegehirn in Echtzeit verfolgen

Eine einzelne Nervenzelle kann weder Gedanken hervorbringen noch Verhalten steuern - Gehirnleistungen sind immer Teamwork. Aktive Nervenzellen bilden ausgedehnte Netzwerke und kommunizieren ständig miteinander. Wissenschaftler um Alipasha Vaziri am Wiener Forschungsinstitut für Molekulare Pathologie (IMP) und an der Rockefeller University (New York) entwickelten eine Technik, mit der sie diese Aktivität in dreidimensionalen Aufnahmen abbilden können. Im Journal Nature Methods beschreiben sie Experimente, bei denen sie die Signale tausender Neuronen im Gehirn aktiver Mäuse aufzeichnen und deren Kommunikation untereinander sichtbar machen konnten.


Leuchtende Neuronen signalisieren Aktivität

Alipasha Vaziri

„Unser Ziel ist es zu verstehen, wie weitläufig vernetzte Neuronen in Echtzeit miteinander ‚reden’ und wie diese Dynamik das Verhalten steuert“, sagt Alipasha Vaziri, der in Wien eine Arbeitsgruppe am IMP leitet und Associate Professor sowie Leiter des Laboratory of Neurotechnology & Biophysics an der Rockefeller University ist. „Mit neu erarbeiteten bildgebenden Verfahren, die auf der von uns entwickelten Technik des ‚light sculpting’ basieren, können wir die Aktivität eines Großteiles der Neuronen abbilden, die in der Gehirnrinde eine funktionale Einheit bilden. Damit sind wir unserem Ziel einen großen Schritt nähergekommen.“

Die technischen Herausforderungen an eine solche Methode sind enorm; schließlich müssen sehr kurzlebige Signale innerhalb einer Vielzahl von Zellen eingefangen werden, während gleichzeitig große Teile des Gehirngewebes beobachtet werden.

Das Team um Vaziri begann vor etwa sechs Jahren am IMP damit, die erforderlichen Technologien zu entwickeln. Zunächst gelang es den Forschern, mit speziellen lichtmikroskopischen Methoden die Aktivität aller 302 Nervenzellen eines Fadenwurm-Gehirns abzubilden. Im nächsten Schritt konnte das wesentlich komplexere Gehirn einer Zebrafisch-Larve mit rund 100 000 Neuronen dargestellt werden. Das Mausgehirn schließlich ist nicht nur wegen seiner 70 Millionen Nervenzellen besonders herausfordernd. Im Gegensatz zu den transparenten Strukturen bei Wurm und Fisch ist es zudem undurchsichtig.

Um die Aktivität der Maus-Neuronen sichtbar zu machen, mussten die Forscher zu einem genetischen Trick greifen. Sie veränderten die Zellen so, dass sie fluoreszierendes Licht aussandten, wann immer sie aktiv waren. Je stärker das Signal, desto intensiver leuchteten die Zellen.

Das Mikroskop-System, das die Forscher zum Aufspüren dieser Signale entwickelten, musste beinahe Unmögliches leisten. Robert Prevedel, der Erstautor der Studie, erläutert die Anforderungen: „Wir mussten in jeder Sekunde Millionen von Bildpunkten abtasten – einen nach dem anderen. Um die Fluoreszenz der Zellen innerhalb von 250 Nanosekunden (weniger als eine Millionstel Sekunde) anzuregen, mussten wir ein eigenes Laser-System konstruieren und das Licht innerhalb des Mikroskops auf eine Weise manipulieren, wie es bei normalen Mikroskopen nicht möglich wäre.“ Robert Prevedel übernahm diese Aufgabe als Postdoktorand im Labor von Alipasha Vaziri und leitet mittlerweile selbst eine Arbeitsgruppe am EMBL in Heidelberg.

Die Technik, mit der alle diese Anforderungen gemeistert wurden, nennt sich „light sculpting“. Dabei werden ultrakurze Laserpulse im Femtosekunden-Bereich (fs: ein Millionstel einer Milliardstel Sekunde) in ihre Farbanteile zerlegt. „Indem wir die Zerstreuung der Farben kontrollieren, können wir den Bereich , in dem das Licht fokussiert wird, modellieren. Bei unseren Experimenten ist er kugelförmig und etwas kleiner als die Nervenzellen selbst. Mit diesem Fokus scannen wir das Gehirn in hoher Geschwindigkeit und können so die Aktivität tausender Neuronen in Echtzeit und in drei Dimensionen beobachten“, beschreibt Prevedel die Methode.

Mittels light sculpting beobachtete das Team um Alipasha Vaziri die Gehirnaktivität von Mäusen, die sich frei auf einer rotierenden Scheibe bewegen konnten. Die Forscher konzentrierten sich auf jenen Bereich der Gehirnrinde, der für die Planung von Bewegung zuständig ist. Der untersuchte Gehirnausschnitt entsprach einer Gewebesäule von einem achtel Kubikmillimeter Größe und damit dem Großteil einer sogenannten ‚kortikalen Säule’. In Zukunft planen die Forscher, die Dynamik und Aktivität sämtlicher Zellen innerhalb einer solchen kortikalen Säule zu erfassen und zu analysieren, um zu verstehen, wie das Gehirn arbeitet.

„Der Erkenntnisgewinn in den Neurowissenschaften ist - wie in anderen Bereichen der Biologie - durch die verfügbaren Technologien begrenzt“, sagt Alipasha Vaziri. „Indem wir zunehmend schnellere, hochauflösende bildgebende Verfahren entwickeln, hoffen wir, dass wir den Horizont für die Gehirnforschung beträchtlich erweitern können.“

Originalpublikation
Prevedel et al.: Fast volumetric calcium imaging across multiple cortical layers using sculpted light. Nature Methods, Advance Online Publication, 31 October 2016.

Legende zum Video
Dreidimensionaler Ausschnitt aus dem Gehirn einer Maus. Die Nervenzellen leuchten auf, wenn sie einander Signale senden. Dieser Bereich der Gehirnrinde ist für die Planung von Bewegung zuständig. Die Nervenzellen wurden genetisch verändert und fluoreszieren hell, wenn sie Kalziumionen aufnehmen – ein Zeichen für Aktivität.

Kontakt IMP
Dr. Heidemarie Hurtl
IMP Communications
Research Institute of Molecular Pathology
+43 (0)1 79730 3625
hurtl@imp.ac.at

Kontakt Rockefeller University
Zach Veilleux
Communications and Public Affairs
The Rockefeller University
+1-212-327-8982 o
+1-347-978-4723 m
zveilleux@rockefeller.edu

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Dynamik Gehirnrinde IMP Molekulare Pathologie Nervenzellen Pathologie Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Serotonin die Kommunikation im Gehirn ausbalanciert
07.04.2020 | Ruhr-Universität Bochum

nachricht Winzige Meeresbewohner als Schlüssel für globale Kreisläufe
07.04.2020 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

07.04.2020 | Physik Astronomie

Festkörperphysik: Vorhersage der Quantenphysik experimentell nachgewiesen

07.04.2020 | Physik Astronomie

Wie Serotonin die Kommunikation im Gehirn ausbalanciert

07.04.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics