Weniger Gift – dank einer „beispiellosen“ Reaktion

Star im Kosmos der Chemie: Die Zinn-Sulfid-Oxid-Cluster (gelb), die Dehnens Team mit der neuartigen Methode hergestellt haben, lagern sich im festen Zustand zu einer Rosette zusammen (links). Jedes der großen gelben Dreiecke repräsentiert dabei einen der Sn-S/O-Cluster; nur von einem ist die Struktur genauer dargestellt, inklusive der nun angehängten Methylgruppen. (Grafik: Stefanie Dehnen und Bertram Peters; das Bild darf nur für die Berichterstattung über die zugehörige wissenschaftliche Veröffentlichung verwendet werden.)

Bei ionischen Flüssigkeiten handelt es sich um Salze, die wegen ungünstiger Passformen der darin enthaltenen Ionen schlecht kristallisieren.

„Sie eignen sich gut als Reaktionsmedien und zeigen dabei auch eine geringere Giftigkeit als viele gängige organische Substanzen“, sagt die Chemieprofessorin Dr. Stefanie Dehnen von der Philipps-Universität Marburg, Mitverfasserin der aktuellen Veröffentlichung.

„Wir untersuchen derzeit systematisch den möglichen Einsatz ionischer Flüssigkeiten als Lösungsmittel und zugleich reaktives Agens, das dabei hilft, gezielt organische Seitengruppen an Metallchalkogenid-Cluster anzuhängen.“

Metallchalkogenid-Cluster sind Moleküle, die Metallatome mit Elementen wie Schwefel, Selen oder Tellur vereinen. „Es gibt viele Einsatzmöglichkeiten für Verbindungen, die solche Cluster enthalten“, berichtet Dehnens Mitarbeiter Bertram Peters, der federführende Autor der Studie. Als Beispiele nennt der Chemiker opto-elektronischen Anwendungen wie Leuchtdioden oder Solarzellen.

Um bestimmte Eigenschaften der Cluster zu verbessern, etwa ihre Löslichkeit in gängigen Lösungsmitteln, muss man organische Seitengruppen anhängen, die aus Kohlenstoff und Wasserstoff bestehen – zum Beispiel eine Methylgruppe. „Bisher war das nicht möglich“, erklärt Dehnens Mitarbeiterin und Koautorin Silke Santner, „es galt in der wissenschaftlichen Literatur auch als grundsätzlich nicht machbar.“

Der vermutete Grund bestehe in der mangelnden Neigung solcher Cluster, überzählige Elektronen zu einer Bindung mit einer Seitengruppe beizutragen, legt Mitverfasser Carsten Donsbach aus Dehnens Arbeitsgruppe dar.

Die mittelhessische Forschungsgruppe präsentiert nun „Produkte einer beispiellosen chemischen Reaktion“, wie die Autoren schreiben. Sie tritt auf, wenn man als Lösungsmittel für die Synthese der Metallchalkogenid-Cluster eine ionische Flüssigkeit einsetzt, die dabei gleichzeitig als Quelle der Methylgruppe dient. Dadurch erhielt das Forschungsteam neun Salze der in dieser neuartigen Weise veränderten Cluster. Das Team um Koautor Professor Dr. Bernd Smarsly von der Justus-Liebig-Universität Gießen bestätigte die Ergebnisse mittels Raman-Spektroskopie.

„Der wichtigste Aspekt ist dabei das Vorhandensein der endständigen Methylgruppen“, heben die Wissenschaftlerinnen und Wissenschaftler hervor. Dieses Ziel ließ sich für verschiedene Clustergrößen und Kombinationen von Elementen verwirklichen, was die breite Anwendbarkeit der Methode belegt. „Unsere Ergebnisse ebnen neuen Strategien den Weg, mit denen sich Metallchalkogenid-Cluster zielgerichtet mit verhältnismäßig ungiftigen Reagenzien modifizieren lassen“, resümiert das Autorenteam.

Professorin Dr. Stefanie Dehnen lehrt Anorganische Chemie an der Philipps-Universität. Auch in der breitenwirksamen Vermittlung naturwissenschaftlicher Fragestellungen ist die Hochschullehrerin aktiv: Dehnen ist Direktorin des Mit-machlabors „Chemikum Marburg“. Die Deutsche Forschungsgemeinschaft förderte die Forschungsarbeiten durch ihr Schwerpunktprogramm 1708 „Material-synthese nahe Raumtemperatur“.

Der Forschungscampus Mittelhessen ist eine hochschulübergreifende Einrichtung nach §47 des Hessischen Hochschulgesetzes der Justus-Liebig-Universität Gießen, der Philipps-Universität Marburg und der Technischen Hochschule Mittelhessen zur Stärkung der regionalen Verbundbildung in der Forschung, Nachwuchsförderung und Forschungsinfrastruktur. Link zum Campus-Schwerpunkt „Materialforschung“: http://www.fcmh.de/mat

Originalveröffentlichung: Bertram Peters & al.: Ionic liquid cations as methylation agent for extremely weak chalcogenido metalate nucleophiles, Chemical Science 2019

Weitere Informationen:
Ansprechpartner:
Professorin Dr. Stefanie Dehnen
Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften
der Philipps-Universität Marburg
Hans-Meerwein-Straße 4, 35043 Marburg
Tel.: 06421 28-25751
E-Mail: dehnen@chemie.uni-marburg.de
Homepage: http://www.uni-marburg.de/fb15/ag-dehnen

Professor Dr. Bernd Smarsly
AG Funktionelle Nanomaterialien der Justus-Liebig-Universität Gießen
Heinrich-Buff-Ring 17, 35392 Gießen
Tel.: 0641 99-34590
E-Mail: Bernd.Smarsly@phys.Chemie.uni-giessen.de

Medienkontakte:
Philipps-Universität Marburg
Wissenschaftsredaktion
Biegenstr. 10, 35037 Marburg
Tel.: 06421 28-26118
E-Mail: pressestelle@uni-marburg.de
Internet: http://www.uni-marburg.de

Justus-Liebig-Universität Gießen
Pressestelle
Ludwigstr. 23, 35390 Gießen
Tel.: 0641 99-12041
E-Mail: pressestelle@uni-giessen.de
Internet: http://www.uni-giessen.de

Forschungscampus Mittelhessen
Geschäftsstelle
Senckenbergstraße 3, 35390 Gießen
Tel.: 0641 99-16481
E-Mail: geschaeftsstelle-fcmh@fcmh.de
Internet: http://www.fcmh.de

Media Contact

Johannes Scholten idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer