Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit erster Feldeffekt-Transistor auf Virenbasis

10.07.2012
Mit Pflanzenviren zu neuen elektronischen Bauteilen
Es ist eines der ältesten bekannten pflanzenpathogenen Viren, seine Entdeckung markierte den Beginn der Virologie: das Tabakmosaikvirus. Nun schreibt es als Geburtshelfer für neuartige elektronische Bauteile in der Nanotechnologie erneut Geschichte. Gemeinsam haben Wissenschaftler der Universität Stuttgart und der Technischen Universität Darmstadt einen Feldeffekt-Transistor entwickelt, dessen Halbleiterschicht durch einen Biomineralisationsprozess auf dem Tabakmosaikvirus entsteht.

Ende des 19. Jahrhunderts erstmals als Krankheitserreger in Tabakkulturen beschrieben, lässt das Tabakmosaikvirus (TMV) heute wegen seiner Winzigkeit, Stabilität und definierten Struktur die Herzen von Nanotechnologen höher schlagen. „Wir erleben gerade eine Renaissance der Pflanzenviren“, schwärmt Prof. Christina Wege vom Biologischen Institut der Universität Stuttgart.

Gemeinsam mit der Arbeitsgruppe um Prof. Joachim Bill vom Institut für Materialwissenschaft und Chemikern der TU Darmstadt um Prof. Jörg J. Schneider hat das Forscherteam um Prof. Holger Jeske und Wege mit Hilfe des TMV neuartige aktive Nanostrukturen für Metalloxid-Halbleiter-Feldeffektransistoren (MOSFETs) schonend hergestellt. Diese werden als Schalter und Verstärker für unzählige An-wendungen in der Digital- und Hochfrequenz-Elektrotechnik eingesetzt und sind typischerweise so klein, dass mehrere Millionen Einzeltransistoren auf einem einzigen Computerprozessor Platz finden. MOSFETs können durch eine elektrische Steuerspannung schnell reguliert werden und bestehen aus drei Materialschichten: Substrat (elektrisch leitend), Dielektrikum und Halbleiter.

Feldeffekt-Transistor mit Halbleiterschicht aus einem Tabakmosaikvirus (grün)-Zinkoxid (grau)-Verbundmaterial, Siliziumdioxid-Dielektrikum (blau), elektrisch leiten-des n-dotiertes Silizium-Substrat (rot) und Elektroden (gold).
Universität Stuttgart

Die Wissenschaftler erzeugten nun die Halbleiterschicht mit Hilfe von TMV-Partikeln mit circa 300 Nanometern (also 300 Millionstel Millimetern) Länge und 18 Nanometern Durchmesser. Sie brachten diese auf zweilagige Silizium-Plättchen mit Elektroden auf und tauchten sie in eine Reaktions-lösung, aus der sich halbleitendes Zinkoxid (ZnO) abscheiden konnte. Dabei zeigte sich, dass die strukturierte Virusoberfläche das Wachs-tum besonders feiner Zinkoxid-Kristalle bewirkte und regulierte: Bereits bei 60 Grad Celsius bildete sich ein neuartiges TMV/ZnO-Verbundmaterial, das ohne Nachprozessierung schon die elektronische Transistoreigenschaft aufwies.

Mit herkömmlicher Technik können anorganische Halbleitermaterialien meist erst bei Temperaturen über 200 Grad hergestellt werden. Analysen zeigten überdies, dass der neue "Biotransistor" den meisten Zinkoxid-Transistoren klar überlegen war – die TMV-Stäbchen unterstützten offensichtlich den Elek¬tronentransport *).

Als nächstes wollen die Projektpartner die Leistung der „Biotransistoren“ weiter verbessern, sie miniaturisieren und an verschiedene Einsatzbereiche anpassen. In Darmstadt wird dafür die Anordnung der Transistorkomponenten aufeinander abgestimmt. In Stuttgart stellen die Pflanzenvirologen neue TMV-Oberflächenvarianten her, die Fabrikation und Betrieb optimieren sollen, und die Materialchemiker entwickeln Methoden zur Produktion weiterer halbleitender TMV-Verbundmaterialien mit anderen physikalischen Eigenschaften. Die umweltverträgliche Herstellung und Leistungsfähigkeit solcher neuen "Biohybridstrukturen" gilt weltweit als aussichtsreiche Grundlage für künftige Produktgenerationen in diversen technischen Bereichen.

*) Atanasova et al.: Virustemplated synthesis of ZnO nanostructures and formation of field-effect transistors. Advanced Materials 2011, 23: 4918-4922.
Siehe auch im Internet unter: http://www.uni-stuttgart.de/bio/bioinst/molbio/, http://www.bionik.uni-stuttgart.de/, http://www.chemie.tu-darmstadt.de/schneider/.

Ansprechpartner: Prof. Dr. Holger Jeske, Biologisches Institut, Tel. 0711/685-65070, e-mail: holger.jeske@bio.uni-stuttgart.de

Andrea Mayer-Grenu | Universität Stuttgart
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Struktur und Funktion von Lichtrezeptor bei Cyanobakterien aufgeklärt
29.01.2020 | Heinrich-Heine-Universität Düsseldorf

nachricht Künstlicher Wirkstoff hemmt Coronaviren
29.01.2020 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Struktur und Funktion von Lichtrezeptor bei Cyanobakterien aufgeklärt

Chemie: Veröffentlichung in PNAS

Bestimmte Proteine dienen Pflanzen und auch Cyanobakterien als Lichtrezeptoren. Das Team des Center for Structural Studies (CSS) der Heinrich-Heine-Universität...

Im Focus: Protein pores packed in polymers make super-efficient filtration membranes

A multidisciplinary team of engineers and scientists has developed a new class of filtration membranes for a variety of applications, from water purification to small-molecule separations to contaminant-removal processes, that are faster to produce and higher performing than current technology. This could reduce energy consumption, operational costs and production time in industrial separations.

Led by Manish Kumar, associate professor in the Cockrell School of Engineering at The University of Texas at Austin, the research team describes their new...

Im Focus: Schnellster hochpräziser 3D-Drucker

3D-Drucker, die im Millimeterbereich und größer drucken, finden derzeit Eingang in die unterschiedlichsten industriellen Produktionsprozesse. Viele Anwendungen benötigen jedoch einen präzisen Druck im Mikrometermaßstab und eine deutlich höhere Druckgeschwindigkeit. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System entwickelt, mit dem sich in bisher noch nicht erreichter Geschwindigkeit hochpräzise, zentimetergroße Objekte mit submikrometergroßen Details drucken lassen. Dieses System präsentieren sie in einem Sonderband der Zeitschrift Advanced Functional Materials. (DOI: 10.1002/adfm.201907795).

Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter...

Im Focus: Wie man ein Bild von einem Lichtpuls macht

Um die Form von Lichtpulsen zu messen, brauchte man bisher komplizierte Messanlagen. Ein Team von MPI Garching, LMU München und TU Wien schafft das nun viel einfacher.

Mit modernen Lasern lassen sich heute extrem kurze Lichtpulse erzeugen, mit denen man dann Materialien untersuchen oder sogar medizinische Diagnosen erstellen...

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Intelligentes Robotersystem an der TU Bergakademie Freiberg verbessert Trinkwasserkontrolle in Binnengewässern

29.01.2020 | Informationstechnologie

Struktur und Funktion von Lichtrezeptor bei Cyanobakterien aufgeklärt

29.01.2020 | Biowissenschaften Chemie

Unerwartetes Materialverhalten: Vom 2D-Kristall zum 1D-Draht

29.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics