Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit erste löchrige Flüssigkeit entwickelt

16.11.2015

Ein internationales Forschungsteam hat die weltweit erste permanent poröse Flüssigkeit entwickelt. Dazu verbanden sie leere starre Molekülkäfige an den Ecken mit Molekülen, die einerseits als Flüssigkeit wirkten, andererseits aber nicht in die Käfige eindrangen. Das neue Material kombiniert die Vorteile einer Flüssigkeit mit denen eines festen Adsorbtionsmittels und könnte als flüssiger Filter in der Industrie Anwendung finden.

Die Forschungsergebnisse, über die die Fachzeitschrift Nature aktuell berichtet, entstanden unter Federführung von Forschenden der Queens University Belfast in Nordirland. Beteiligt waren Wissenschaftlerinnen und Wissenschaftler der Christian-Albrechts-Universität zu Kiel (CAU), der argentinischen Universidad Nacional de Cuyo, der Universität Liverpool und der französischen Université Blaise Pascal.


Tönjes Koschine und Klaus Rätzke (v.l.) diskutieren die neuen Forschungsergebnisse.

Foto/Copyright: Reinhard Krause-Rehberg, Halle

Eigentlich haben Flüssigkeiten keine stabilen größeren Löcher beziehungsweise Poren. Da deren Moleküle alle beweglich sind, zerfallen Poren sofort wieder. Poröse Festkörper andererseits wie Zeolithe und Metall-organische Gerüste (metal organic frameworks, MOF) werden schon länger in chemischen Prozessen, etwa der Katalyse und Gastrennung, in der Industrie eingesetzt.

Diese starren Strukturen haben dauerhaft bestehende Poren gleicher Größe. Darin lassen sich Abfallprodukte wie Methan speichern. Probleme tauchen aber immer wieder auf, wenn sie in bestehende chemische Anlagen eingefügt werden sollen. Poröse Flüssigkeiten, die als Filter funktionieren, würden solche Hürden überwinden: sie könnten zum Beispiel einfach durch Leitungen gepumpt werden.

Sehr nah dran an dieser Anwendung sind nun die Forschenden mit ihrer neuen Materialklasse. Sie besteht aus Molekülkäfigen, die in einer Flüssigkeit aus Kronenether gelöst werden. Um die Käfige löslich zu machen, bauten die Wissenschaftlerinnen und Wissenschaftler jeweils sechs Kronenether-Molekülgruppen an die Ecken der Käfige. Trotz einer hohen Konzentration an Käfigen erreichten sie auf diese Weise eine bei Raumtemperatur flüssige Substanz.

Herauszufinden, ob die Käfige in der Flüssigkeit auch wirklich leer waren, war Aufgabe der Experten von der Kieler Universität um den Professor für Materialverbunde Franz Faupel.

Mit der sogenannten Positronenlebenszeitspektroskopie – einer Methode, die nur eine Handvoll Forschungsgruppen weltweit beherrschen – wiesen sie auch die Größe der Löcher experimentell nach. Dazu schoss Doktorand Tönjes Koschine mit Positronen, also Antimaterie, auf eine Probe der porösen Flüssigkeit. Positronen zerfallen sofort, wenn sie auf Elektronen treffen.

„Wenn in der Flüssigkeit Löcher sind, gibt es an dieser Stelle auch keine Elektronen, die Positronen ‚leben‘ dort also länger, und das haben wir gemessen“, erklärt Koschine. Die Länge der Lebenszeit erlaube den Kieler Forschern auch Rückschlüsse auf die Größe der Poren.

„Positronen leben in den Löchern etwa 10 Mal länger als wenn sie direkt auf Elektronen treffen, insgesamt also zwei Nanosekunden“, sagt Doktorvater Professor Klaus Rätzke. Eine Nanosekunde entspricht einer milliardstel Sekunde. Damit sind die Hohlräume in den Käfigen circa einen halben Nanometer groß, so groß wie zwei bis drei Atome.

Die Kieler Wissenschaftler haben auf diese Weise die Ergebnisse der Simulationen innerhalb dieser internationalen Forschungskooperation bestätigt und einen wichtigen Beitrag zur Entwicklung und Charakterisierung von neuen Materialien geleistet.

Originalpublikation
Liquids with permanent porosity. Nicola Giri, Mario G. Del Pópolo, Gavin Melaugh, Rebecca L. Greenaway, Klaus Rätzke, Tönjes Koschine, Laure Pison, Margarida F. Costa Gomes, Andrew I. Cooper & Stuart L. James. Nature 527, 216–220 (12 November 2015) doi:10.1038/nature16072
Link: http://www.nature.com/nature/journal/v527/n7577/full/nature16072.html


Kontakt:
Professor Dr. Klaus Rätzke
Institut für Materialwissenschaft
Tel.: 0431/880 6227
E-Mail: kr@tf.uni-kiel.de

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Materialwissenschaft, Chemie, Physik, Biologie, Elektrotechnik, Informatik, Lebensmitteltechnologie und verschiedenen medizinischen Fächern zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen.

Mehr Informationen auf www.kinsis.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht IMMUNOQUANT: Bessere Krebstherapien als Ziel
19.10.2018 | Julius-Maximilians-Universität Würzburg

nachricht Auf dem Weg zu maßgeschneiderten Naturstoffen
19.10.2018 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics