Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasserstoff aus Methanol für Brennstoffzellen

05.05.2014

Eine ganze Kaskade an chemischen Reaktionen läuft ab, wenn aus Methanol mit Hilfe von Metall-Katalysatoren Wasserstoff gewonnen wird. An der TU Wien werden diese Prozesse untersucht, Karin Föttinger und Christoph Rameshan erhielten dafür zwei Forschungspreise.

Wenn Wasserstoff mit Sauerstoff zu Wasser reagiert, wird Energie frei. Diese Reaktion nutzt man in Brennstoffzellen. Ein wesentliches Problem dabei ist allerdings die Aufbewahrung des benötigten Wasserstoffs, daher versucht man, Wasserstoff in Form von Methanol zu speichern, und das Methanol dann wieder in Wasserstoff und Kohlendioxid zu zerlegen. Das gelingt mit speziellen Metall-Katalysatoren, die an der TU Wien untersucht werden.


Christoph Rameshan

TU Wien


Karin Föttinger

TU Wien

Unklar war lange Zeit, welche Atome und Moleküle auf der Katalysator-Oberfläche überhaupt eine wichtige Rolle spielen. Verschiedene Messungen zeigen nun: Entscheidend ist das Zusammenspiel aus Metallen und Metalloxiden. Karin Föttinger und Christoph Rameshan, beide am Institut für Materialchemie der TU Wien tätig, erhielten für Arbeiten dazu jeweils einen Forschungspreis.

Nano-Partikel auf Oxid-Oberflächen

Methanol ist das kleinste Alkoholmolekül und wird in großen Mengen industriell hergestellt. In Zukunft könnte Methanol eine wichtige Rolle als Energieträger spielen. Denn wenn es gelingt, ihn effizient und umweltfreundlich in Wasserstoff und CO2 umzuwandeln, kann aus dem Wasserstoff in einer Brennstoffzelle saubere Energie gewonnen werden. Die sogenannte Dampfreformierung, bei der aus Methanol mit Wasserdampf Kohlendioxid und Wasserstoff entsteht, läuft allerdings nur mit Hilfe bestimmter Katalysatoren ab, wie etwa mit Metall-Nanopartikeln auf Oxid-Oberflächen.

Das Ziel ist, aus Methanol und Wasserdampf ein möglichst reines Gemisch von CO2 und molekularem Wasserstoff herzustellen. Kohlenmonoxid soll darin nicht enthalten sein, weil das den Brennstoffzellen schaden würde. Die Kohlenmonoxid-Konzentration im Produktgas hängt ganz entscheidend von der Art des verwendeten Katalysators ab.

An der TU Wien werden diese katalytischen Vorgänge im Rahmen des Spezialforschungsbereichs FOXSI untersucht, der von Prof. Günther Rupprechter vom Institut für Materialchemie geleitet wird. Die Prozesse, die an der Katalysatoroberfläche ablaufen, sind sehr kompliziert: „Unterschiedliche Atom- und Molekülsorten sind beteiligt“, erklärt Karin Föttinger. „Oft ist schwer zu sagen, welche für die Reaktion wichtig sind, und welche eine untergeordnete Rolle spielen.“

In der Industrie versucht man, solche Prozesse durch Versuch und Irrtum anzupassen, die Zusammensetzung der Katalysatoren oder Parameter wie Druck und Temperatur zu verändern, doch an der TU Wien geht man einen Schritt weiter: Karin Föttinger untersucht mit modernen spektroskopischen Methoden, wie die Reaktionen am Katalysator im Detail ablaufen. Christoph Rameshan trennt die einzelnen Komponenten des Katalysators und analysiert sie in Modellsystemen einzeln. So wird es einfacher, genau zu verstehen, was bei den komplizierten chemischen Prozessen an der Katalysator-Oberfläche alles passiert.

Oft werden als Katalysatoren winzige Nanopartikel aus Metall verwendet, etwa aus Palladium. Diese Partikel werden auf Metalloxid-Oberflächen, zum Beispiel Zinkoxid gesetzt. Heiß diskutiert wurde in den letzten Jahren die Frage, ob das Reinmetall oder das Oxid für die Katalyse zuständig ist. „Unsere Messungen zeigen: Man braucht beides“, erklärt Karin Föttinger. „Das Oxid ist wichtig für die Wasseraktivierung, für die Aufspaltung der Wassermoleküle. Das Metall hingegen ist wichtig für die Aufspaltung des Methanols“, so Rameshan. Diese Erkenntnisse können nun dazu genutzt werden, die Katalysatoren zu verbessern, indem man beispielsweise durch Nanostrukturierung die Metall-Oxid-Grenzfläche optimiert.

Auszeichnung für TU-Forschung

Die Arbeiten am Institut für Materialchemie wurden nun durch zwei Forschungspreise gewürdigt: Karin Föttinger erhielt den angesehenen Theodor-Körner-Förderungspreis, um zusätzliche experimentelle Geräte für weitere Forschungen finanzieren zu können. Christoph Rameshan wurde der Gerhard Ertl Young Investigator Award 2014 zugesprochen, der jährlich vom Journal Surface Science für herausragende Forschungsleistungen vergeben wird.

Bilderdownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/wasserstoff/

Rückfragehinweis:
Prof. Günther Rupprechter
Institut für Materialchemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-165100
guenther.rupprechter@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?
03.07.2020 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Wirkstoffe aus Kieler Meeresalgen als Mittel gegen Infektionen und Hautkrebs entdeckt
03.07.2020 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

03.07.2020 | Biowissenschaften Chemie

Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern

03.07.2020 | Energie und Elektrotechnik

Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

03.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics