Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was unser Gehirn flexibel macht: Bayreuther Forscher ergründen Plastizität von Nervenzellen

06.11.2017

Nur lernfähige Gehirne können flexibel auf die Umwelt reagieren. Daher sind die Nervenzellen im Gehirn von Menschen und Tieren in der Lage, eigene Funktionen so zu verändern, dass sie für immer neue Anforderungen gewappnet sind. Diese neuronale Plastizität ist darin begründet, dass elektrische Signale in den Nervenbahnen in genetische Signale übersetzt werden. Wie dies geschieht, wollen die Bayreuther Forscher Dr. Claus-D. Kuhn (Biochemie) und Prof. Dr. Gerrit Begemann (Entwicklungsbiologie) in einem interdisziplinären Projekt herausfinden, das von der DFG mit 230.000 Euro gefördert wird. Die Ergebnisse werden vor allem für die Behandlung neuronaler Erkrankungen von großem Interesse sein.

Wenn Nervenzellen in unserem Gehirn fortlaufend durch elektrische Signale angeregt werden, wird auch ihre molekulare Ausstattung davon langfristig beeinflusst. Spezielle Gene, die Immediate Early Genes (IEGs), können auf die fortwährenden elektrischen Reize reagieren – und sie tun dies, indem sich ihre eigene Konzentration in den stimulierten Nervenzellen blitzschnell erhöht.


Drei Tage alte Larve eines genetisch veränderten Zebrabärblings (oben). Unter UV-Beleuchtung werden Zellen des Gehirns und Rückenmarks sichtbar (unten).

Bilder: Gerrit Begemann

Diese plötzliche Vermehrung der IEGs hat dann wiederum einen erheblichen Einfluss darauf, welche Gene der Nervenzellen in Ribonukleinsäuren (RNAs) übersetzt und damit für die Herstellung lebenswichtiger Proteine genutzt werden.

Biochemisch gesprochen: Der Anstieg der IEGs in unseren Nervenzellen beeinflusst die Genexpression, also die Aktivität bestimmter Gene. Elektrische Signale werden so zu genetischen Signalen: Sie steuern die Entwicklung des Gehirns eines Embryos, und sie verleihen dem Gehirn von Kindern und auch von Erwachsenen die Fähigkeit, sich auf immer neue Reizsituationen einzustellen.

Vom Zebrabärbling zum Menschen

Mit ihrem neuen Projekt an der Schnittstelle von Biochemie und Entwicklungsbiologie wollen Dr. Claus-D. Kuhn und Prof. Dr. Gerrit Begemann die Verbindung zwischen elektrischer Reizweiterleitung und Änderungen der Genexpression in unseren Nervenzellen genauer aufklären. Als Modellorganismus dient dabei das Gehirn des Zebrabärblings, auch Zebrafisch genannt.

„Dieses Tiermodell hat den Vorteil, dass seine Embryonen durchsichtig sind. Durch moderne genetische Methoden können wir einzelne Zellen sichtbar machen oder in ihre Entwicklung eingreifen. Wir sind heute in der Lage, die Entwicklung der Nervenzellen mit bildgebenden Verfahren präzise zu verfolgen und biomedizinisch wichtige Rückschlüsse auf die Entwicklung menschlicher Nervenzellen zu ziehen“, erklärt Begemann, der sich an der Universität Bayreuth seit vielen Jahren mit der Regeneration bei Zebrafischen befasst.

Nicht-kodierende RNAs in der Hauptrolle

Um den Ursachen für die neuronale Plastizität unserer Nervenzellen auf die Spur zu kommen, sind in Ergänzung der Arbeit am Zebrafisch umfangreiche biochemische Untersuchungen erforderlich. Im Mittelpunkt des Interesses stehen dabei spezielle molekulare Einheiten, die überall in der menschlichen DNA vorkommen und als Enhancer bezeichnet werden.

„Schon lange ist bekannt, dass Enhancer die Genaktivität dadurch beeinflussen, dass Transkriptionsfaktoren in unterschiedlichen Kombinationen an sie andocken. Dadurch wird das Ablesen der Gene und deren Übersetzung in RNAs entscheidend vorbereitet. Erst in den letzten Jahren hat sich aber herausgestellt, dass es noch einen weiteren Weg der Beeinflussung gibt, und genau hier liegt offenbar ein Schlüssel zum Verständnis der neuroplastischen Plastizität“, erläutert Kuhn.

Die Enhancer werden nämlich, da es sich um Teile der DNA handelt, auch ihrerseits in RNAs übersetzt. Die Enhancer-RNAs enthalten zwar keine Baupläne für Proteine – sie werden deshalb als nicht-kodierende RNAs bezeichnet – , aber sie tragen wesentlich zur Vermehrung und Aktivierung von Immediate Early Genes bei. „Wie die Enhancer-RNAs die IEGs aktivieren und wie die IEGs dann ihrerseits das Ablesen der Gene und folglich die Proteinherstellung beeinflussen, wird ein zentrales Thema unseres Projekts sein“, so Kuhn.

An genau diesem Punkt erwarten die Bayreuther Wissenschaftler entscheidende Erkenntnisse von den Untersuchungen am Zebrabärbling: „Die ‚Krönung‘ unseres Projekts wird es sein, wenn es uns gelingt, den Einfluss von Enhancer-RNAs auf die Nervenzellen-Entwicklung im Zebrabärbling in allen Stadien nachzuzeichnen“, sagt Begemann.

Forschungsförderung

Das von der Deutschen Forschungsgemeinschaft für drei Jahre bewilligte Projekt ist Teil des DFG-Schwerpunktprogramms 1738 "Non-coding RNAs in Nervous System Development, Plasticity and Disease", an dem insgesamt 21 Universitäten und Forschungsinstitute in Deutschland beteiligt sind.

Bayreuther Projekte zu neuronalen Enhancer-RNAs (eRNAs):
http://www.kuhnlab.uni-bayreuth.de/en/research/research_eRNAs/

Kontakte:

Dr. Claus D. Kuhn
Elitenetzwerk Bayern
Forschungszentrum BIOmac
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (921) 55-4356
E-Mail: claus.kuhn@uni-bayreuth.de
http://www.kuhnlab.uni-bayreuth.de

Prof. Dr. Gerrit Begemann
Entwicklungsbiologie
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 55 2475
E-Mail: gerrit.begemann@uni-bayreuth.de
http://www.entwicklungsbiologie.uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Biochemie-Absolvent der Universität Bayreuth hat Antigen für hochspezifischen Corona-Antikörpertest entwickelt
22.05.2020 | Universität Bayreuth

nachricht Wenn aus theoretischer Chemie Praxis wird
22.05.2020 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn aus theoretischer Chemie Praxis wird

Thomas Heine, Professor für Theoretische Chemie an der TU Dresden, hat 2019 zusammen mit seinem Team topologische 2D-Polymere vorhergesagt. Nur ein Jahr später konnten diese Materialien von einem italienischen Forscherteam synthetisiert und deren topologische Eigenschaften experimentell nachgewiesen werden. Für die renommierte Fachzeitschrift Nature Materials war das Anlass, Thomas Heine zu einem News and Views Artikel einzuladen, der in dieser Woche veröffentlicht wurde. Unter dem Titel "Making 2D Topological Polymers a reality" beschreibt Prof. Heine, wie aus seiner Theorie Praxis wurde.

Ultradünne Materialien sind als Bausteine für nanoelektronische Bauelemente der nächsten Generation äußerst interessant, da es viel einfacher ist, Schaltungen...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Mikroroboter rollt tief ins Innere des Körpers

Mit einem Leukozyten als Vorbild haben Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme in Stuttgart einen Mikroroboter entwickelt, der in Größe, Form und Bewegungsfähigkeit einem weißen Blutkörperchen gleicht. In einem Labor simulierten sie dann ein Blutgefäß – und es gelang ihnen, den Mikroroller durch diese dynamische und dichte Umgebung zu steuern. Der Roboter hielt dem simulierten Blutfluss stand und brachte damit das Forschungsgebiet rund um die zielgenaue Medikamentenabgabe einen Schritt weiter: Es gibt keinen besseren Zugangsweg zu allen Geweben und Organen im menschlichen Körper als den Blutkreislauf.

Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Stuttgart haben einen winzigen Mikroroboter entwickelt, der einem weißen...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: Schnüffel-Roboter als Katastrophenhelfer

Wo Menschenleben gefährdet sind, kommen künftig neuartige Roboter zum Einsatz, die an der TU Dresden entwickelt werden

Wissenschaftler an der TU Dresden arbeiten seit Juni 2019 an künstlichen Helfern, die in einem Katastrophengebiet Gefahren erkennen, beseitigen und somit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

Erfolgreiche Premiere für das »Electrochemical Cell Concepts Colloquium«

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Techniker Krankenkasse, EuPD Research und Handelsblatt starten Bewerbung für die Sonderpreise "Gesunde Hochschule" im Rahmen des Corporate Health Award 2020

22.05.2020 | Förderungen Preise

Werkstattbericht #1: Head Mounted Displays (HMDs) – Schwerpunktpositionen und Drehmomente

22.05.2020 | Informationstechnologie

Biochemie-Absolvent der Universität Bayreuth hat Antigen für hochspezifischen Corona-Antikörpertest entwickelt

22.05.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics