Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was transkranielle Magnetstimulation im Gehirn bewirkt

05.06.2018

Neue Erkenntnisse, wie transkranielle Magnetstimulation (TMS) auf Verschaltungen von Nervenzellen wirkt, haben Forscher der Ruhr-Universität Bochum gewonnen. Sie nutzten fluoreszierende Farbstoffe, die Auskunft über die Aktivität von Nervenzellen geben. Am Beispiel von kortikalen Karten zeigten sie im Tiermodell, dass TMS-Stimulation Nervenzellverbindungen in der Sehrinde des Gehirns empfänglicher für Reorganisationsprozesse macht. TMS wird zur Therapie verschiedener Erkrankungen des Gehirns wie Depressionen, Alzheimer oder Schizophrenie angewandt; die genaue Wirkweise ist bislang jedoch wenig erforscht.

Die aktuellen Ergebnisse beschreibt ein Team um Privatdozent Dr. Dirk Jancke vom Bochumer Optical Imaging Lab in der Zeitschrift Proceedings of the National Academy of Sciences of the United States of America, kurz PNAS, vom 4. Juni 2018.


Dirk Jancke ist Leiter des Optical Imaging Lab an der RUB

© RUB, Kramer

Auswirkung auf kortikale Karten in der Sehrinde untersucht

Das Team untersuchte, wie sich eine TMS-Stimulation auf sogenannte Orientierungskarten im visuellen Teil des Gehirns auswirkt. Diese Karten sind zum Teil genetisch festgelegt, aber auch durch die Interaktion mit der Umwelt geprägt.

Die Sehrinde enthält zum Beispiel eine kortikale Karte für Reize mit kontrastreichen Kanten bestimmter Orientierungen, die gewöhnlich die Grenzen von Objekten markieren. Bestimmte Zellen antworten bevorzugt auf Reize mit einer bestimmten Orientierung, wobei ähnliche Winkel in nebeneinanderliegenden Hirnbereichen verarbeitet werden.

Für die Studie verwendeten die Forscher hochfrequente TMS und verglichen, wie Nervenzellen vorher und nachher auf Bildreize mit einer bestimmten Kantenorientierung reagierten. Das Ergebnis: Die Nervenzellen antworteten nach der Magnetstimulation variabler; die Präferenz für einen bestimmten Winkel war also nicht mehr so stark ausgeprägt wie vor der TMS.

„Man könnte sagen, die Nervenzellen waren nach der TMS-Behandlung für eine Weile unentschlossener und damit offen für neue Aufgaben“, veranschaulicht Dirk Jancke. „Die Behandlung öffnet so ein Zeitfenster für plastische Prozesse.“

Kurzes visuelles Training verändert Karten

Speziell analysierte das Team, wie sich ein passives visuelles Training nach einer TMS-Behandlung auswirkt. Eine nur 20-minütige Stimulation mit Bildreizen einer bestimmten Kantenorientierung führte dazu, dass sich die Gehirnbereiche vergrößerten, deren Zellen bevorzugt auf den präsentierten Kantenwinkel reagieren. „Die Karte in der Sehrinde hat sich innerhalb kurzer Zeit dem neuen Informationsgehalt der visuellen Stimulation angepasst“, sagt Jancke.

„Ein solches Verfahren, also ein gezieltes sensorisches oder motorisches Training nach Anwendung von TMS, könnte daher ein möglicher Ansatz für therapeutische Maßnahmen und auch für bestimmte Formen sensomotorischen Trainings sein“, erklärt Dirk Jancke.

Wirkweise der Methode schwer zu untersuchen

Die transkranielle Magnetstimulation ist ein nicht invasives und schmerzfreies Verfahren, bei dem eine Magnetspule über dem Kopf positioniert wird. Der gewählte Gehirnbereich kann dann über Magnetwellen gezielt gehemmt oder aktiviert werden.

Bislang ist wenig über die Wirkung des Verfahrens auf Zellebene bekannt, weil das starke Magnetfeld der TMS die Signale anderer Methoden überlagert, mit denen Forscher die Auswirkungen der TMS beobachten könnten. Messverfahren mit hoher zeitlicher Auflösung wie das EEG werden durch den Magnetpuls gestört. Andere Verfahren, wie die funktionelle Kernspintomografie, sind zudem nicht schnell genug und haben eine zu geringe räumliche Auflösung.

Um die Gehirnaktivität nach TMS-Anwendung zu messen, nutzt Janckes Team spannungsabhängige Farbstoffe. Diese werden in den Membranen der Nervenzellen verankert. Wird die Zelle erregt, fluoreszieren die Moleküle. Lichtsignale geben somit Aufschluss über die Aktivität von Zellen.

Förderung

Die Deutsche Forschungsgemeinschaft förderte die Arbeiten im Rahmen des Sonderforschungsbereichs 874 (Teilprojekt A2, Eysel/Jancke), der sich seit 2010 an der Ruhr-Universität Bochum der Frage widmet, wie Sinneseindrücke im Gehirn verarbeitet werden. Außerdem wurde die Studie durch die German-Israeli Project Cooperation (DIP, JA 945/3-1, SL 185/1-1), das Schwerpunktprogramm (SPP) 1665 (JA 945/4-1) und durch das Bundesministerium für Bildung und Forschung unterstützt.

Originalveröffentlichung

Vladislav Kozyrev, Robert Staadt, Ulf Eysel, Dirk Jancke: TMS-induced neuronal plasticity enables targeted remodeling of visual cortical maps, in: PNAS, 2018, DOI: 10.1073/pnas.1802798115

Pressekontakt

Privatdozent Dr. Dirk Jancke
Optical Imaging Lab
Institut für Neuroinformatik
Ruhr-Universität Bochum
Tel.: 0234 32 27845
E-Mail: dirk.jancke@.rub.de

Text: Judith Merkelt-Jedamzik, Julia Weiler

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Lichtgesteuerte Moleküle: Forscher öffnen neue Wege im Recycling
14.08.2018 | Humboldt-Universität zu Berlin

nachricht Was wir von Ameisen und Amöben über Koordination und Zusammenarbeit lernen können
13.08.2018 | Australisch-Neuseeländischer Hochschulverbund / Institut Ranke-Heinemann

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Arctic Ocean 2018 - Forscher untersuchen Wolken und Meereis in der Arktis

"Arctic Ocean 2018": So heißt die diesjährige Forschungsexpedition des schwedischen Eisbrechers ODEN in der Arktis, an der auch ein Wissenschaftler der Universität Leipzig beteiligt ist. Noch bis zum 25. September wollen die etwa 40 Forscher an Bord vor allem das mikrobiologische Leben im Ozean und im Meereis untersuchen und wie es mit der Wolkenbildung in der Arktis zusammenhängt.

Während der Fahrt durch die Arktis, die Ende Juli gestartet ist, sollen im Rahmen der Kampagne MOCCHA 2018 (Microbiology-Ocean-Cloud-Coupling in the Hight...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

Herausforderung China – Wissenschaftler aus der ganzen Welt diskutieren miteinander auf UW/H-Tagung

03.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltkleinster Transistor schaltet Strom mit einzelnem Atom in festem Elektrolyten

13.08.2018 | Energie und Elektrotechnik

Your Smartphone is Watching You: Gefährliche Sicherheitslücken in Tracker-Apps

13.08.2018 | Informationstechnologie

Was wir von Ameisen und Amöben über Koordination und Zusammenarbeit lernen können

13.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics