Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Stammzellen zu perfekten Alleskönnern macht

27.06.2017

Forschende der Universität Zürich und des Universitätsspitals Zürich haben das Eiweiss entdeckt, das natürliche embryonale Stammzellen befähigt, sämtliche Körperzellen zu bilden. Bei in Zellkulturen gezüchteten embryonalen Stammzellen ist dieses Alleskönnerpotenzial eingeschränkt. Dieses Wissen wollen die Wissenschaftler nutzen, um grosse Knochenbrüche mit Stammzellen zu behandeln.

Weil Stammzellen das Potenzial haben, sich in die verschiedenen Zelltypen des Körpers zu entwickeln, gelten sie als biologische Alleskönner. Doch für die Mehrzahl der Stammzellen greift diese Bezeichnung zu weit.


Das Bild zeigt wenige Tage alte embryonale Zellhaufen: links mit funktionierendem Pramel7, rechts ohne das Eiweiss – die Entwicklung der Stammzellen bleibt stecken und die Embryonen sterben ab.

Paolo Cinelli, Universitätsspital Zürich

So können erwachsene Stammzellen etwa bei Verletzungen zwar Zellen in ihrem Gewebe ersetzen, aber eine Fettstammzelle wird niemals eine Nerven- oder Lungenzelle hervorbringen. Die Wissenschaft unterscheidet deshalb zwischen den multipotenten erwachsenen Stammzellen und den tatsächlichen Alleskönnern – den pluripotenten embryonalen Stammzellen.

Epigenetische Markierungen bestimmen Entwicklungspotenzial

Doch sogar unter den wahren Alleskönnern gibt es Unterschiede. Embryonale Stammzellen, die in Zellkulturen im Labor wachsen, befinden sich in einem anderen Zustand als die Zellen, die man nur während den ersten Tagen im Inneren des Zellhaufens findet, aus dem der gerade erst entstehende Embryo besteht.

Jetzt zeigen Forschende um Paolo Cinelli vom Universitätsspital Zürich und Raffaella Santoro von der Universität Zürich im Fachblatt Nature Cell Biology, mit welchem Mechanismus sich die natürlichen Alleskönner von den embryonalen Stammzellen in den Kulturen abheben.

Im Zentrum ihrer Entdeckung steht ein Eiweiss namens Pramel7 (für «preferentially expressed antigen in melanoma»-like 7), das in den Zellen des wenige Tage alten embryonalen Zellhaufens dafür sorgt, dass das Erbgut von epigenetischen Markierungen – das sind chemische DNA-Anhängsel in der Form von Methylgruppen – befreit wird.

«Je mehr Methylgruppen entfernt werden, desto offener ist das Buch des Lebens», sagt Cinelli. Weil aus einer embryonalen Stammzelle jegliche Zelle des menschlichen Körpers entstehen kann, müssen zu Beginn auch alle Gene frei zugänglich sein. Je mehr sich eine Zelle entwickelt oder ausdifferenziert, desto stärker wird ihr Erbgut wieder methyliert und «zugeklebt». So seien etwa in einer Knochenzelle nur noch diejenigen Gene aktiv, die die Zelle für ihre Funktion benötige, erklärt der Biochemiker.

Eiweiss ist verantwortlich für perfekte Pluripotenz

Pramel7 scheint trotz seiner kurzen Wirkungsdauer von wenigen Tagen eine lebenswichtige Rolle zu spielen: Als die Forschenden um Cinelli und Santoro das Gen für dieses Eiweiss mit gentechnischen Tricks ausschalteten, blieb die Entwicklung im Stadium des embryonalen Zellhaufens stecken. Doch in den kultivierten Stammzellen kommt Pramel7 kaum vor. Das könnte auch erklären, wieso das Erbgut dieser Zellen mit mehr Methylgruppen versetzt sei als das Erbgut in den natürlichen embryonalen Stammzellen – den perfektesten Alleskönnern, meint Cinelli.

Funktionsweise von Stammzellen nutzen, um Knochengewebe zu regenerieren

Sein Interesse an den Stammzellen rührt von der Hoffnung her, dereinst Menschen mit komplexen Knochenbrüchen damit helfen zu können. «Knochen können sich zwar super regenerieren und sind das einzige Gewebe, das dabei keine Narben bildet», sagt Paolo Cinelli. Aber die Knochenstümpfe müssen sich berühren, damit sie zusammenwachsen können. Wenn etwa bei einem Motorradunfall ein Knochen mehrfach breche und auch an die Oberfläche trete, sei der mittlere Teil oft nicht mehr brauchbar. Für diese Fälle brauche es dann einen Knochenersatz. Sein Team forscht an Trägermaterialien, die sie in Zukunft mit körpereigenen Stammzellen besiedeln möchten. «Deshalb müssen wir wissen, wie Stammzellen funktionieren», schliesst Cinelli.

Literatur:
Urs Graf, Elisa A. Casanova, Sarah Wyck, Damian Dalcher, Marco Gatti, Eva Vollenweider, Michal J. Okoniewski, Fabienne A.Weber, Sameera S. Patel, Marc W. Schmid, Jiwen Li, Jafar Sharif, Guido A. Wanner, Haruhiko Koseki, JieminWong, Pawel Pelczar, Lorenza Penengo, Raffaella Santoro, and Paolo Cinelli. Pramel7 mediates ground-state pluripotency through proteasomal-epigenetic combined pathways. Nature Cell Biology. 12 June 2017. doi:10.1038/ncb3554

Kontakt:
PD Dr. sc. nat. Paolo Cinelli
Klinik für Traumatologie
UniversitätsSpital Zürich
Tel. +41 44 255 36 78
E-Mail: paolo.cinelli@usz.ch

Weitere Informationen:

http://www.media.uzh.ch/de/medienmitteilungen/2017/Perfekte-Pluripotenz.html

Kurt Bodenmüller | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Die Zacken in der Viruskrone
07.04.2020 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Auf der Suche nach neuen Antibiotika
07.04.2020 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zacken in der Viruskrone

07.04.2020 | Biowissenschaften Chemie

Auf der Suche nach neuen Antibiotika

07.04.2020 | Biowissenschaften Chemie

Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

07.04.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics