Was die Identität von Zellen bestimmt

Pionier-Faktoren machen’s möglich: In der Kulturschale umprogrammierte Bindegewebszellen werden zu Nervenzellen (rot) und Muskelzellen (grün). Quelle: Mall/DKFZ

Das Hector Institut für Translationale Hirnforschung (HITBR) wird getragen vom Zentralinstitut für Seelische Gesundheit, vom Deutschen Krebsforschungszentrum und der Hector Stiftung II.

Transkriptionsfaktoren können einzelne Gene anschalten und sind dadurch dafür verantwortlich, dass Zellen ihre spezialisierte Identität und Funktion im Körper annehmen.

Manche dieser Faktoren können sogar, wenn sie beispielsweise künstlich durch Viren in Zellen eingeschleust werden, die Identität der Zellen verändern oder reprogrammieren.

Mit dieser Technologie können Wissenschaftler heute bereits Haut- oder Blutzellen zu Nerven- oder Stammzellen umprogrammieren und für die Erforschung von Krankheiten nutzten.

Moritz Mall am Deutschen Krebsforschungszentrum (DKFZ, HITBR) und Qian Yi Lee an der Stanford Universität verglichen nun zwei Transkriptionsfaktoren, die strukturell ähnlich sind, allerdings völlig unterschiedliche Zelltypen induzieren. Der Faktor Ascl1 kann Hautzellen zu Nervenzellen programmieren, während Myod1 Hautzellen zu Muskelzellen umwandeln kann.

Da Transkriptionsfaktoren normalerweise ihre Wirkung entfalten, indem sie bestimmte Genschalter binden, untersuchten die Forscher zuerst die DNA-Bindestellen beider Faktoren. Obwohl Ascl1 und Myod1 sehr unterschiedliche Zelltypen induzieren, binden beide überraschenderweise an größtenteils überlappenden Erkennungssequenzen im Erbgut der Maus.

Dies gilt sowohl während der Reprogrammierung als auch in der normalen Zelldifferenzierung „Das war für uns ein Hinweis, dass weitere Mechanismen daran beteiligt sein müssen, dass nur die gewünschten Gene reguliert werden“, erklärt Mall. In der Tat zeigten weitere Analysen, dass trotz der Überlappung Ascl1 und Myod1 an jeweils bestimmten Bereichen im Erbgut mit stärkerer Bindungskraft anhefteten.

Beide Faktoren weisen eine weitere besondere Eigenschaft auf. Sie können an sehr kompakte, normalerweise unzugängliche Bereiche des Erbguts binden und dort inaktive Gene einschalten. Transkriptionsfaktoren mit dieser Eigenschaft werden als Pionier-Faktoren bezeichnet.

Ascl1 schaltet bevorzugt Gene ein, die in Nervenzellen benötigt werden, während Myod1 hauptsächlich solche Gene aktiviert, die im Muskel erforderlich sind. Auf diese Weise bringen die beiden Faktoren hauptsächlich die gewünschten Zelltypen hervor. Allerdings fanden die Forscher, dass beiden Faktoren auch Fehler unterliefen und sie einige unerwünschte Gene einschalteten.

Doch dagegen können sogenannte Wächter-Faktoren helfen, wie Mall und Lee nun herausfanden. Diese schalten gezielt unerwünschte Gene aus. So gibt es in Nervenzellen den Nervenzell-Wächter, der unter anderem Muskelprogramme stilllegt.

Transkriptionsfaktoren sind modular aufgebaut. Einzelne Domänen haben bestimmte Aufgaben. Die DNA-Bindedomäne bindet spezifische DNA-Sequenzen im Erbgut. Zusätzliche Interaktions-Domänen sind dafür zuständig, dass sich mehrere Transkriptionsfaktoren aneinanderheften können.

Als die Forscher die DNA-Bindedomäne und Interaktions-Domäne der beiden Faktoren austauschten, konnten sie den Muskelfaktor Myod1 sogar dazu bringen, Nervenzellen zu induzieren. Offenbar bestimmen die Bindung an die DNA und an die Ko-Faktoren gemeinsam die Spezifizität der Pionier-Faktoren.

„Wir konnten auf molekularer Ebene entschlüsseln, wie die Pionier-Faktoren Ascl1 und Myod1 funktionieren und dass sie durch ihre unglaubliche Bindekraft auch fehleranfällig sind“, erklärt Moritz Mall. „Deshalb sind Ko-Faktoren wie die Wächter wichtig: Sie halten die Pionier-Faktoren im Zaum. Mutationen in Wächterfaktoren stehen mit Erkrankungen wie Krebs in Verbindung, was ihre bedeutende Rolle unterstreicht.“

Die Wissenschaftler wollen ihre neuen Erkenntnisse nutzen, um noch präziser bestimmte Zelltypen für die Forschung zu erzeugen. Ihr Ziel dabei ist es, so in Zukunft möglicherweise Gehirnerkrankungen in der Kulturschale untersuchen zu können.

Die Arbeit am DKFZ und HITBR wurde unter anderem durch die Hector Stiftung II und den Europäischen Forschungsrat ERC gefördert.

Qian Yi Lee, Moritz Mall, Soham Chanda, Bo Zhou, Kylesh S. Sharma, Katie Schaukowitch, Juan M. Adrian-Segarra, Sarah D. Grieder, Michael S. Kareta, Orly L. Wapinski, Cheen Euong Ang, Rui Li, Thomas C. Südhof, Howard Y. Chang, Marius Wernig: Pro-neuronal activity of Myod1 due to promiscuous binding to neuronal genes.
Nature Cell Biology 2020, DOI: 10.1038/s41556-020-0490-3

Ein Bild zu dieser Meldung steht zum Download zur Verfügung:
https://www.dkfz.de/de/presse/pressemitteilungen/2020/bilder/MyoD3.jpg
BU: Pionier-Faktoren machen’s möglich: In der Kulturschale umprogrammierte Bindegewebszellen werden zu Nervenzellen (rot) und Muskelzellen (grün).

Nutzungshinweis für Bildmaterial zu Pressemitteilungen
Die Nutzung ist kostenlos. Das Deutsche Krebsforschungszentrum (DKFZ) gestattet die einmalige Verwendung in Zusammenhang mit der Berichterstattung über das Thema der Pressemitteilung bzw. über das DKFZ allgemein. Als Bildnachweis ist folgendes anzugeben: „Quelle: Mall/DKFZ“.
Eine Weitergabe des Bildmaterials an Dritte ist nur nach vorheriger Rücksprache mit der DKFZ-Pressestelle (Tel. 06221 42 2854, E-Mail: presse@dkfz.de) gestattet. Eine Nutzung zu kommerziellen Zwecken ist untersagt.

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1.300 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können.

Beim Krebsinformationsdienst (KID) des DKFZ erhalten Betroffene, interessierte Bürger und Fachkreise individuelle Antworten auf alle Fragen zum Thema Krebs.

Gemeinsam mit Partnern aus den Universitätskliniken betreibt das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) an den Standorten Heidelberg und Dresden, in Heidelberg außerdem das Hopp-Kindertumorzentrum KiTZ. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums an den NCT- und den DKTK-Standorten ist ein wichtiger Beitrag, um vielversprechende Ansätze aus der Krebsforschung in die Klinik zu übertragen und so die Chancen von Krebspatienten zu verbessern.
Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Ansprechpartner für die Presse:

Dr. Sibylle Kohlstädt
Pressesprecherin
Kommunikation und Marketing
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
E-Mail: S.Kohlstaedt@dkfz.de
E-Mail: presse@dkfz.de

www.dkfz.de

Qian Yi Lee, Moritz Mall, Soham Chanda, Bo Zhou, Kylesh S. Sharma, Katie Schaukowitch, Juan M. Adrian-Segarra, Sarah D. Grieder, Michael S. Kareta, Orly L. Wapinski, Cheen Euong Ang, Rui Li, Thomas C. Südhof, Howard Y. Chang, Marius Wernig: Pro-neuronal activity of Myod1 due to promiscuous binding to neuronal genes.
Nature Cell Biology 2020, DOI: 10.1038/s41556-020-0490-3

Media Contact

Dr. Sibylle Kohlstädt Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer