Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was das Mäuseauge dem Mäusegehirn erzählt

07.01.2016

Tübinger Neurowissenschaftler zeigen, wie die Netzhaut Informationen ans Gehirn sendet: Bilder werden bereits im Auge ausführlicher interpretiert als bislang angenommen

Bilder werden im Auge wesentlich umfassender verarbeitet und interpretiert als bisher bekannt. Tübinger Wissenschaftler haben in einer Studie die Kanäle untersucht, über die Informationen aus dem Auge ins Gehirn geleitet werden.


Die Netzhaut leitet über bis zu 40 verschiedene Kanäle Informationen an unser Gehirn weiter.

Abbildung: CIN/Universität Tübingen

Dabei identifizierten sie zahlreiche neue Zelltypen und stellten zudem fest, dass die Netzhaut über bis zu 40 verschiedene Kanäle ins Gehirn verfügen dürfte – doppelt so viele wie bislang angenommen. Die Ergebnisse werden im renommierten Fachjournal „Nature“ veröffentlicht. DOI: 10.1038/nature16468

„Was das Froschauge dem Froschgehirn erzählt“ überschrieb 1959 der Kognitionswissenschaftler Jerome Lettvin einen bahnbrechenden Aufsatz. Seine Annahme: Das Gesehene wird nicht erst im Gehirn, sondern bereits im Auge verarbeitet. Lettvin konnte zeigen, dass das Auge nicht nur wie eine Kamera Bilder aufnimmt und ungefiltert ins Gehirn weiterleitet. Vielmehr werden bereits im Auge wichtige Informationen gewonnen, beispielsweise im Falle des Frosches:

„Dort ist etwas Kleines, Dunkles, vielleicht eine Fliege“. Seine Thesen waren so revolutionär, dass Lettvin zunächst ausgelacht wurde. Mittlerweile aber gilt sein vielzitierter Aufsatz als Meilenstein, die damals gestellten Fragen beschäftigen die Wissenschaft noch heute.

So auch das Tübinger Forscherteam um Professor Thomas Euler und Professor Matthias Bethge vom Werner Reichardt Centrum für Integrative Neurowissenschaften der Universität Tübingen, dem Bernstein Center for Computational Neuroscience und dem Forschungsinstitut für Augenheilkunde des Universitätsklinikums Tübingen: Die Neurowissenschaftler wollten wissen, welche Informationen über die Welt die Retina (Netzhaut) vom Auge ins Gehirn sendet. Dazu untersuchten sie in einer großangelegten Studie über 11.000 einzelne Netzhaut-Zellen in Mäusen. Die bisher größte Studie dieser Art hatte ca. 450 Zellen umfasst.

Durch eine Kombination modernster experimenteller Methoden untersuchten die Forscher sogenannte retinale Ganglienzellen (retinal ganglion cells, RGCs): Sie nutzten Elektroporation, eine Fär-betechnik, durch die man ganze Populationen von Nervenzellen unter dem Mikroskop sichtbar machen und dann einzelnen Zellen in Echtzeit „bei der Arbeit“ zusehen kann. Dazu kamen neue Verfahren zur Analyse der großen Datenmengen.

Die Wissenschaftler interessierten sich dabei vor allem für die verschiedenen Funktionen der Zellen: Unterschiedliche Ganglienzellen reagieren auf unterschiedliche Eigenschaften der gesehenen Bilder und schicken diese Informationen über getrennte Kanäle ans Gehirn, die jeweils für Kontrast, Farbe, Bewegungsrichtung, die Lage von Kanten und ihrer Orientierung etc. zuständig sind. Aus diesen Informationskanälen baut das Gehirn dann unser Bild von der Welt. Die Wissenschaftler testeten Nervenzellreaktionen auf verschiedene einfache Bilder und bewegte optische Reize.

Das Forscherteam konnte anhand dieser funktionalen Unterscheidung bis zu 40 verschiedene Typen von Ganglienzellen in der Netzhaut zuordnen, die sehr wahrscheinlich ebenso viele Informationskanäle repräsentieren. Bislang war man von maximal 20 Typen ausgegangen. Die Ergebnisse aus dem Mausmodell lassen sich zwar nicht eins zu eins auf den Menschen übertragen – die Retina ist aber bei allen Säugetieren sehr ähnlich aufgebaut.

Die Vielzahl an Informationskanälen weist darauf hin, dass die Netzhaut die aufgenommenen Lichtsignale nicht nur in Nervenzellsignale umwandelt, sondern bereits wichtige Interpretationsarbeit leistet. Mit ihrer grundlegenden Arbeit sind die Tübinger Wissenschaftler dem Verständnis, wie die Interpretation von Bildern im Gehirn erfolgt, einen Schritt näher gekommen.

Da viele Erkrankungen, die den Sehsinn einschränken, nur bestimmte Zelltypen in der Retina oder bestimmte Informationskanäle betreffen, können die Erkenntnisse auch dazu beitragen, gezielte Therapien zu entwickeln. Auch die – gerade in Tübingen – seit einigen Jahren voranschreitende Forschung an prothetischer Implantattechnologie (Retina-Implantat), die eines Tages Blinde sehend machen könnte, kann derartige Beobachtungen nutzen. Bisherige Modelle stimulieren die Netzhaut relativ unspezifisch, mit Hilfe der neuen Erkenntnisse könnten künftige Versionen gezielt visuelle Informationen in die passenden Kanäle einspeisen.

Publikation: Tom Baden, Philipp Berens, Katrin Franke, Miroslav Román Rosón, Matthias Bethge, Thomas Euler: “The Functional Diversity of Retinal Ganglion Cells in the Mouse.” Nature (im Druck). Januar 2016. DOI: 10.1038/nature16468

Kontakt:
Prof. Thomas Euler
Universität Tübingen
Werner-Reichardt-Centrum für Integrative Neurowissenschaften (CIN)
Telefon +49 7071 29-85028
thomas.euler@cin.uni-tuebingen.de

www.eye-tuebingen.de/eulerlab

Pressekontakt CIN:
Dr. Paul Töbelmann
Universität Tübingen
Werner-Reichardt-Centrum für Integrative Neurowissenschaften (CIN)
Wissenschaftskommunikation
Otfried-Müller-Str. 25 ∙ 72076 Tübingen
Tel.: +49 7071 29-89108
paul.toebelmann@cin.uni-tuebingen.de

www.cin.uni-tuebingen.de  

Antje Karbe | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen
15.10.2018 | Universität Rostock

nachricht Bio-Angeln für Seltene Erden: Wie Eiweiß-Bruchstücke Elektronik-Schrott recyceln
15.10.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Materiezustände durch Licht verändern

Forscherinnen und Forscher der Universität Hamburg stören die kristalline Ordnung

Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Neurowoche 2018: 7000 Experten für Gehirn und Nerven tagen in Berlin

15.10.2018 | Veranstaltungen

Berlin5GWeek: Private Industrienetze und temporäre 5G-Inseln

15.10.2018 | Veranstaltungen

PV Days in Halle zeigen neue Chancen für die Photovoltaik

11.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Smart Glasses Guide: Neues Tool zur Auswahl von Datenbrillen und Anwendungen

15.10.2018 | Informationstechnologie

Neurowoche 2018: 7000 Experten für Gehirn und Nerven tagen in Berlin

15.10.2018 | Veranstaltungsnachrichten

Grauer Star: Neues Verfahren bei der Katarakt-Operation

15.10.2018 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics