Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum manche Zellen alles können

19.12.2017

Eine neue Studie im Fachmagazin ‚Nature Genetics‘ beschreibt eine Gruppe von embryonalen Stammzellen, die sich zu totipotenten Alleskönnern umprogrammieren lassen. Die Autoren vom Münchner Helmholtz Zentrum und der Ludwig-Maximilians-Universität (LMU) konnten zudem den Mechanismus aufklären, wie es dazu kommt.

Der Begriff Totipotenz (von lateinisch totus „ganz“ und potentia „Vermögen, Kraft“) beschreibt die Fähigkeit von Zellen, sich in alle anderen Zelltypen des Körpers zu entwickeln. Das beste Beispiel für so einen Alleskönner ist die befruchtete Eizelle, aus der sich alle weiteren Zellen des entstehenden Lebens bilden. Aber auch noch nach der ersten Teilung im 2-Zell-Stadium bleibt diese Totipotenz erhalten. Die Stammzellen des späteren Embryos hingegen sind lediglich pluripotent, können also viele Zelltypen bilden, aber eben nicht alle.


Fluoreszenzbild muriner embryonaler Stammzellen: Zellkerne sind in Blau, 2CLCs in Grün und Zellen im Übergang in Rot dargestellt.

Quelle: Helmholtz Zentrum München/IES

Hält man allerdings solche embryonalen Stammzellen in Kultur, so entwickelt ein winziger Teil (rund ein Prozent) davon eine Totipotenz, wie sie dem 2-Zell-Stadium entspricht. Im englischen werden diese Zellen 2CLCs (2-cell-like cells) genannt.

Herauszufinden was hinter diesem Phänomen steckt, war die Motivation des Teams um Prof. Dr. Maria Elena Torres-Padilla. Sie ist Direktorin des Instituts für Epigenetik und Stammzellen (IES) am Helmholtz Zentrum München und Professorin für Stammzellbiologie an der LMU.

Embryonale Stammzellen mit Farbspiel-Trick abgetrennt

Dazu wollten die Forscher zunächst die aktiven Gene zwischen embryonalen Stammzellen und 2CLCs vergleichen und benutzten dafür einen Trick: Wenn Zellen im 2CLC-Stadium ankommen, wird sehr oft das Gen MERVL abgelesen. Die Forscher fusionierten nun das MERVL-Gen mit dem Gen für ein grün leuchtendes Protein. Anschließend konnten sie die grün leuchtenden 2CL-Zellen von den nicht leuchtenden „normalen“ embryonalen Stammzellen abtrennen.

Der anschließende Vergleich der beiden Gruppen ergab, dass vor allem das Gen Zscan4 während des Übergangs zur Totipotenz aktiv war. Wie beim Trick zuvor, fusionierte das Team das Zscan4-Gen mit dem Gen für ein rotes Protein. Beobachteten sie die Zellen unter dem Mikroskop, färbten sich die betreffenden Zellen zunächst rot und dann grün.

„Diese Beobachtungen zeigten uns, dass Zellen offensichtlich durch eine Übergangsphase müssen, bevor sie im 2CLC-Stadium ankommen“, erklärt Torres-Padilla. „Als nächstes wollten wir den treibenden Mechanismus dahinter aufdecken.“

Dazu wählte das Team einen sogenannten siRNA Screen: Mit dieser Methode ist es möglich, mehr als 1000 Gene gezielt zu beeinträchtigen, um zu sehen wie sich das auf die Entwicklung von 2CL-Zellen auswirkt. “Die Ergebnisse waren außergewöhnlich”, beschreibt IES-Wissenschaftler Dr. Xavier Gaume, gemeinsam mit Diego Rodriguez-Terrones, Erstautor der Studie. „Wir konnten zahlreiche Proteine identifizieren, die die Entstehung von 2CLCs regulieren.“ Besonders häufig entstanden 2CLCs, je seltener der Proteinkomplex Ep400/Tip60 vorlag.

Da der Faktor an der Verpackung von Chromatin* beteiligt ist, wollen die Forscher nun herausfinden, ob eine Öffnung des Chromatins grundsätzlich mit einer Totipotenz in Verbindung steht.

Weitere Informationen

* Chromatin bezeichnet das Erbgut (DNA) und die Proteine, die es verpacken und organisieren. Je nachdem wie dicht sich das Chromatin gepackt ist, können bestimmte Gene abgelesen werden oder eben nicht.

Hintergrund:
Erst kürzlich konnten die Forscher ebenfalls in ‚Nature Genetics‘ zeigen, dass sogenannte Retrotransposons eine wichtige Rolle in der Entwicklung des Embryos spielen. Auch hier ist die Öffnung des Chromatins ein Thema.

Original-Publikation:
Rodriguez-Terrones, D. & Gaume, X. et al. (2017): A molecular roadmap for the emergence of early-embryonic-like cells in culture. Nature Genetics, DOI: 10.1038/s41588-017-0016-5

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. Das Helmholtz Zentrum München ist Partner im Deutschen Zentrum für Diabetesforschung e.V. http://www.helmholtz-muenchen.de

Das Institut für Epigenetik und Stammzellen (IES) befasst sich mit der Erforschung und der Charakterisierung früher Ereignisse in der befruchteten Eizelle von Säugern. Die Wissenschaftler interessieren sich vor allem für die Totipotenz der Zellen, die im Laufe der Entwicklung verloren geht, und wollen aufklären, welche Veränderungen im Zellkern zu diesem Verlust führen. Ziel ist, ein besseres Verständnis der molekularen Abläufe zu bekommen und dadurch therapeutische Ansätze zu entwickeln, diese zu beeinflussen. http://www.helmholtz-muenchen.de/ies

Die LMU ist eine der führenden Universitäten in Europa mit einer über 500-jährigen Tradition. Sie bietet ein breites Spektrum aller Wissensgebiete – die ideale Basis für hervorragende Forschung und ein anspruchsvolles Lehrangebot. Es reicht von den Geistes- und Kultur- über Rechts-, Wirtschafts- und Sozialwissenschaften bis hin zur Medizin und den Naturwissenschaften. 15 Prozent der 50.000 Studierenden kommen aus dem Ausland – aus insgesamt 130 Nationen. Das Know-how und die Kreativität der Wissenschaftlerinnen und Wissenschaftler bilden die Grundlage für die herausragende Forschungsbilanz der Universität. Der Erfolg der LMU in der Exzellenzinitiative, einem deutschlandweiten Wettbewerb zur Stärkung der universitären Spitzenforschung, dokumentiert eindrucksvoll die Forschungsstärke der Münchener Universität. http://www.lmu.de

Ansprechpartner für die Medien
Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-Mail: presse@helmholtz-muenchen.de

Fachliche Ansprechpartnerin
Prof. Dr. Maria Elena Torres-Padilla, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Epigenetik und Stammzellen, Marchioninistraße 25, 81377 München - Tel. +49 89 3187 3317 - E-Mail: torres-padilla@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Berichte zu: Chromatin Epigenetik Gen Genetics Gesundheit LMU Stammzellen Trick Umwelt Zellen Zelltypen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blockierung des Eisentransports könnte Tuberkulose stoppen
01.04.2020 | Universität Zürich

nachricht Universität Innsbruck entwickelt neuartiges Corona-Testverfahren
01.04.2020 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blockierung des Eisentransports könnte Tuberkulose stoppen

Tuberkulose-Bakterien brauchen Eisen zum Überleben. Wird der Eisentransport in den Bakterien gestoppt, so kann sich der Tuberkulose-Erreger nicht weiter vermehren. Nun haben Forscher der Universität Zürich die Struktur des Transportproteins ermittelt, das für die Eisenzufuhr zuständig ist. Dies eröffnet Möglichkeiten zur Entwicklung neuer Medikamente.

Einer der verheerendsten Erreger, der sich im Inneren menschlicher Zellen vermehren kann, ist Mycobacterium tuberculosis – der Bazillus, der Tuberkulose...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Corona-Pandemie: Medizinischer Vollgesichtsschutz aus dem 3D-Drucker

In Vorbereitung auf zu erwartende COVID-19-Patienten wappnet sich das Universitätsklinikum Augsburg mit der Beschaffung von persönlicher Schutzausrüstung für das medizinische Personal. Ein Vollgesichtsschutz entfaltet dabei in manchen Situationen eine bessere Schutzwirkung als eine einfache Schutzbrille, doch genau dieser ist im Moment schwer zu beschaffen. Abhilfe schafft eine Kooperation mit dem Institut für Materials Resource Management (MRM) der Universität Augsburg, das seine Kompetenz und Ausstattung im Bereich des 3D-Drucks einbringt, um diesen Engpass zu beheben.

Das Coronavirus SARS-CoV-2 wird nach heutigem Wissensstand maßgeblich durch Tröpfcheninfektion übertragen. Dabei sind neben Mund und Nase vor allem auch die...

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Studie mit bispezifischem Antikörper liefert beeindruckende Behandlungserfolge bei Multiplem Myelom

01.04.2020 | Medizin Gesundheit

Unternehmenswissen - Wie gelingt der Umstieg von Präsenz auf Online?

01.04.2020 | Seminare Workshops

SmartKai – „Einparkhilfe“ zur Vermeidung von Schäden an Schiffen und Hafeninfrastruktur

01.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics