Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017

Eine Brennstoffzelle braucht ein Oxidationsmittel – etwa Sauerstoff. An der TU Wien kann man nun erklären, warum er manchmal nur noch schlecht eindringt und die Zellen unbrauchbar werden.

Eine Brennstoffzelle erzeugt elektrischen Strom aus einer einfachen chemischen Reaktion – zum Beispiel der Verbindung von Sauerstoff und Wasserstoff zu Wasser. Knifflig ist allerdings die Frage, woraus man keramische Brennstoffzellen am besten herstellt. Neue Materialien werden benötigt, die möglichst effizient als Katalysator für die gewünschte chemische Reaktion dienen, aber auch möglichst lange halten ohne sich zu verändern.


An manchen Stellen der Oberfläche kann Sauerstoff viel leichter eindringen als an anderen.

TU Wien


Mit gepulsten Lasern wird die passende Oberfläche erzeugt.

TU Wien

Bisher war man beim Entwickeln solcher Materialien oft auf Versuch und Irrtum angewiesen. An der TU Wien gelang es nun, die Oberfläche von Brennstoffzellen auf atomarer Skala gezielt zu verändern und gleichzeitig zu vermessen. So lassen sich nun wichtige Phänomene erstmals erklären – etwa, warum Strontium-Atome Spielverderber sind, oder dass Kobalt für Brennstoffzellen nützlich sein kann.

Sauerstoff-Nachschub als Flaschenhals

An der Kathode, dem positiven Pol der Brennstoffzelle, wird Sauerstoff aus der Luft in das Brennstoffzellen-Material eingebaut. Elektrisch geladene Sauerstoff-Ionen müssen dann durch das Material hindurchwandern und auf der negativ geladenen Seite, der Anode mit dem Brennstoff reagieren – zum Beispiel mit Wasserstoff.

„Der Flaschenhals dieses Gesamtprozesses ist der Sauerstoffeinbau an der Kathode“, erklärt Ghislain Rupp aus der Forschungsgruppe von Prof. Jürgen Fleig vom Institut für Chemische Technologien und Analytik der TU Wien. Zum selben Institut gehört das Team von Prof. Andreas Limbeck, das ebenfalls am Forschungsprojekt beteiligt war.

Damit der Sauerstoffeinbau ausreichend schnell abläuft, muss man die Brennstoffzellen bei sehr hohen Temperaturen betreiben – bei etwa 700 bis 1000 Grad Celsius. Schon seit längerer Zeit ist man auf der Suche nach besseren Kathodenmaterialien, die eine niedrigere Betriebstemperatur erlauben. „Man kennt einige besonders interessante Kandidaten, zum Beispiel Strontium-dotiertes Lanthancobaltat, kurz LSC“, sagt Ghislain Rupp. Das große Problem dabei ist, dass diese Materialien nicht langfristig stabil bleiben. Irgendwann nimmt die Aktivität ab, die Leistung der Brennstoffzelle verringert sich. Über die genaue Ursache dafür gab es bisher nur Vermutungen.

Oberfläche gezielt verändert

Klar war allerdings: Die Oberfläche der Kathode, an der sich der Sauerstoff festsetzen und dann in die Brennstoffzelle wandern soll, spielt eine entscheidende Rolle. Daher entwickelte man an der TU Wien ein Verfahren, die Oberfläche gezielt zu verändern und gleichzeitig zu messen, wie sich das auf die elektrischen Eigenschaften der Brennstoffzelle auswirkt.

„Mit einem Laserpuls verdampfen wir verschiedene Materialien, die sich dann in winzigen Mengen an der Oberfläche anlagern“, erklärt Rupp. „So können wir fein dosiert die Zusammensetzung der Kathoden-Oberfläche modifizieren und gleichzeitig beobachten, wie sich dabei der Widerstand des Systems verändert.“

Zu viel Strontium schadet

So konnte man zeigen, dass Strontium-reiches Material an der Oberfläche schadet: „Wenn an der Oberfläche Strontium-Atome dominieren, wird Sauerstoff nur sehr schwer eingebaut“, sagt Rupp. „Die Kathodenoberfläche nimmt den Sauerstoff auf sehr inhomogene Weise auf: An bevorzugten Plätzen, etwa dort, wo Kobalt-Atome sitzen, funktioniert der Sauerstoff-Einbau gut, dort wo Strontium dominiert, gelangt kaum Sauerstoff in die Kathode.“ Das erklärt auch, warum die Brennstoffzellen mit der Zeit immer schlechter werden: Das Strontium aus dem Inneren des Materials wandert an die Oberfläche und bedeckt eben jene aktiven Kobalt-Zentren - der Brennstoffzelle bleibt die Luft weg.

Diese Ergebnisse liefern wichtige Hinweise darauf, wie der Sauerstoffeinbau grundsätzlich in Materialien wie LSC abläuft und welche Vorgänge für den Leistungsabfall von Brennstoffzellen verantwortlich sind. „Wir sind damit dem technischen Einsatz des Materials LSC für Brennstoffzellen einen wichtigen Schritt näher gekommen“, glaubt Rupp, „und unsere neue Untersuchungsmethode, die hochpräzise Beschichtung mit elektrischer Vermessung vereint, wird sicher auch in anderen Bereichen der Festkörperionik noch eine wichtige Rolle spielen.“

Originalpublikation:Ghislain M. Rupp et al, Real-time impedance monitoring of oxygen reduction during surface modification of thin film cathodes, Nature Materials, 2017. DOI: 10.1038/nmat4879

Bilderdownload: https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2017/brennstoffzelle

Rückfragehinweis:
Dr. Ghislain Rupp
Institut für Chemische Technologien und Analytik
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43 664 4112728
ghislain.rupp@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Form bleiben
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Intelligente Fluoreszenzfarbstoffe
16.08.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schatzkammer Datenbank: Digitalisierte Schwingfestigkeitskennwerte sparen Entwicklungszeit

16.08.2018 | Informationstechnologie

Interaktive Software erleichtert Design komplexer Gussformen

16.08.2018 | Informationstechnologie

Fraunhofer HHI entwickelt Quantenkommunikation für jedermann im EU-Projekt UNIQORN

16.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics