Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Bitterstoffe aus Artischocken nicht immer bitter schmecken, aus Absinth aber schon

08.10.2015

Untersucht man eine Gruppe von Menschen, so stellt man fest, dass bestimmte Bitterstoffe, z. B. aus der Artischocke, für einige deutlich bitterer schmecken als für andere, während solche individuellen Wahrnehmungsunterschiede für andere Bitterstoffe, z. B. aus Absinth, nicht zu beobachten sind. Wie Wissenschaftler des Deutschen Instituts für Ernährungsforschung (DIfE) und der Universität von Kalifornien nun erstmals zeigen, lässt sich dieses Phänomen auf die besondere chromosomale Verteilung der Bitterrezeptorgenvarianten zurückführen. Die Ergebnisse tragen dazu bei, die biologischen Grundlagen der Geschmackswahrnmung und das Entstehen individueller Nahrungsvorlieben besser zu verstehen.

Das Wissenschaftlerteam um Wolfgang Meyerhof und Natacha Roudnitzky vom DIfE veröffentlichte seine Daten nun in der Fachzeitschrift PLOS Genetics (Roudnitzky et al.; 2015; DOI:10.1371/journal.pgen.1005530).


Artischocken

DIfE

Obwohl nicht generell ein Zusammenhang zwischen Bitterkeit und Giftigkeit besteht, gehen Wissenschaftler im Allgemeinen davon aus, dass der Sinn für Bitteres uns vor dem Verzehr giftiger Nahrung bewahren soll. Dennoch weiß man schon lange, dass die Bittergeschmackswahrnehmung für einige Bitterstoffe sehr unterschiedlich ausgeprägt sein kann. Ein klassisches Beispiel ist die Wahrnehmung der künstlichen Substanz Phenylthiocarbamid. Für diese gibt es „Schmecker“ und „Nichtschmecker“, je nachdem, ob die entsprechende Person über die intakte Genvariante des Bitterrezeptors TAS2R38 verfügt oder nicht. Allerdings sind solche Wahrnehmungsunterschiede, die auf eine Mutation in einem einzigen Bitterrezeptorgen zurückzuführen sind, sehr selten. Meistens erkennen mehrere der 25 verschiedenen Bitterrezeptoren ein und denselben Bitterstoff gleichzeitig, wenn auch mit unterschiedlicher Empfindlichkeit. Der Ausfall eines Rezeptors ist somit nicht automatisch mit einem Verlust des Bittergeschmacks für diesen Stoff verbunden.

Wie die neuen genetischen und sensorischen Untersuchungen an 48 Studienteilnehmern erstmals zeigen, hängen die individuellen Unterschiede in der Geschmackswahrnehmung aber auch davon ab, wie die Rezeptorgenvarianten auf den Chromosomen verteilt sind. Denn sie werden meist nicht einzeln, sondern gruppenweise vererbt. Dies führt dazu, dass Menschen die Bitterkeit einiger Substanzen, wie z. B. Grosheimin aus der Artischocke, oft unterschiedlich stark empfinden, während dies für andere Bitterstoffe wie Absinthin nicht der Fall ist.

Vereinfacht dargestellt, wird Grosheimin hauptsächlich von zwei verschiedenen Bitterrezeptoren erkannt: dem sogenannten TAS2R43 und TAS2R46. Die Gene für beide Rezeptoren liegen auf einem Chromosom eng beieinander und werden daher meist gemeinsam vererbt. Das Chromosom weist dabei entweder zwei sensitive oder zwei für den Bitterstoff insensitive Genvarianten auf. Da jeder Mensch über einen doppelten Chromosomensatz verfügt – ein Satz stammt von der Mutter und einer vom Vater -, besteht in diesem Fall eine etwa 25 prozentige Wahrscheinlichkeit, dass ein Kind zwei Chromosomen mit insensitiven Rezeptorgenen erbt. Dies bedeutet, dass es Grosheimin nur in sehr hohen Dosen mittels anderer Rezeptoren schmecken kann, während ein Kind mit zwei sensitiven Varianten auf beiden Chromosomen den Bitterstoff bereits in sehr geringen Konzentrationen erkennt.

Für Absinthin, den Bitterstoff aus Absinth, gibt es ebenfalls zwei spezifische Rezeptoren: den TAS2R30 und den TAS2R46. Die Gene liegen ebenfalls dicht beieinander, ihre Varianten sind jedoch anders verteilt. So findet sich auf einem Chromosom entweder eine sensitive Variante des TAS2R30 und eine insensitive Variante des TAS2R46 oder umgekehrt, eine insensitive Variante des TAS2R30 sowie eine sensitive Variante des TAS2R46. In jedem Fall erben die Nachkommen also immer wenigstens einen sensitiven Bitterrezeptor, der Absinthin erkennt. Dies erklärt, warum Absinthin und damit auch Absinth für die meisten Menschen bitter schmeckt.

„Wie unsere Ergebnisse zeigen, beeinflussen die Gene unser Geschmacksempfinden nicht unwesentlich. Zudem belegen sie, dass die genetischen Mechanismen, welche die Wahrnehmung von Bitterstoffen beeinflussen, sehr viel komplexer sind als ursprünglich angenommen“, sagt Erstautorin Natacha Roudnitzky. „Unser Ziel ist es, noch mehr über die biologischen Grundlagen der menschlichen Geschmackswahrnehmung zu erfahren, um besser zu verstehen, wie sie neben anderen Sinnen und kulturellen Gewohnheiten unsere Nahrungsauswahl und unser Ernährungsverhalten beeinflussen“, ergänzt Wolfgang Meyerhof, Leiter der Abteilung Molekulare Genetik am DIfE. Ein besseres Verständnis könne dazu beitragen, Methoden zu entwickeln, die ein gesünderes Ernährungsverhalten unterstützen, so Meyerhof weiter.

Hintergrundinformation

Der Geschmackssinn ist ein chemischer Sinn und beschränkt sich auf die fünf Grundgeschmacksarten: süß, sauer, salzig, bitter und umami. Der Begriff „umami“ kommt aus dem Asiatischen und bedeutet so viel wie „es schmeckt köstlich“ und wird durch den Eiweißbaustein Glutamat ausgelöst. Obwohl die Forschung in den letzten Jahren große Fortschritte gemacht hat, wissen wir heute immer noch relativ wenig über die molekularen und neuronalen Prozesse, die unserem Geschmackssinn zugrunde liegen.
In der vorliegenden Studie testeten die Wissenschaftler die Geschmackseffekte von sechs verschiedenen natürlichen Bitterstoffen und setzten die sensorischen Daten in Korrelation zu den genetischen. Zu den sechs untersuchten Substanzen zählen: Absinthin, Amarogentin, Cascarillin, Grosheimin, Quassin und Chinin.

Link zur Publikation: <http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005530 >

Informationen zur Abteilung Molekulare Genetik finden Sie unter: http://www.dife.de/forschung/abteilungen/kurzprofil.php?abt=MOGE

Das Deutsche Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE) ist Mitglied der Leibniz- Gemeinschaft. Es erforscht die Ursachen ernährungsassoziierter Erkrankungen, um neue Strategien für Prävention, Therapie und Ernährungsempfehlungen zu entwickeln. Zu seinen Forschungsschwerpunkten gehören die Ursachen und Folgen des metabolischen Syndroms, einer Kombination aus Adipositas (Fettsucht), Hypertonie (Bluthochdruck), Insulinresistenz und Fettstoffwechselstörung, die Rolle der Ernährung für ein gesundes Altern sowie die biologischen Grundlagen von Nahrungsauswahl und Ernährungsverhalten. Mehr unter http://www.dife.de.

Die Leibniz-Gemeinschaft vereint 89 Einrichtungen, die anwendungsbezogene Grundlagenforschung betreiben und wissenschaftliche Infrastruktur bereitstellen. Insgesamt beschäftigen die Leibniz-Einrichtungen rund 18.100 Menschen – darunter 9.200 Wissenschaftlerinnen und Wissenschaftler – bei einem Jahresetat von insgesamt knapp 1,64 Milliarden Euro. Die Leibniz-Gemeinschaft zeichnet sich durch die Vielfalt der in den Einrichtungen bearbeiteten Themen und Disziplinen aus. Die Forschungsmuseen der Leibniz-Gemeinschaft bewahren und erforschen das natürliche und kulturelle Erbe. Darüber hinaus sind sie Schaufenster der Forschung, Orte des Lernens und der Faszination für die Wissenschaft. Mehr unter http://www.leibniz-gemeinschaft.de.

Kontakt:

Prof. Dr. Wolfgang Meyerhof
Deutsches Institut für Ernährungsforschung
Potsdam-Rehbrücke (DIfE)
Abteilung Molekulare Genetik
Arthur-Scheunert-Allee 114-116
14558 Nuthetal
Tel: +49 (0)33200 88-2282/-2556
E-Mail: meyerhof@dife.de

Dr. Natacha Roudnitzky
Deutsches Institut für Ernährungsforschung
Potsdam-Rehbrücke (DIfE)
Abteilung Molekulare Genetik
Arthur-Scheunert-Allee 114-116
14558 Nuthetal
Tel: +49 (0)33200 88-2680
E-Mail: natacha.roudnitzky@dife.de

Pressekontakt:

Dr. Gisela Olias
Deutsches Institut für Ernährungsforschung
Potsdam-Rehbrücke (DIfE)
Leiterin Presse- und Öffentlichkeitsarbeit
Tel.: +49 33200 88-2278/-2335
E-Mail: olias@dife.de
oder presse@dife.de
www.dife.de

Weitere Informationen:

http://www.dife.de/forschung/abteilungen/kurzprofil.php?abt=MOGE Informationen zur Abteilung Molekulare Genetik

Dr. Gisela Olias | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Münchner Botaniker entdeckt neue fleischfressende Pflanzenart aus Madagaskar
09.07.2020 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

nachricht Klimawandel: Schnelltest für Korallen
09.07.2020 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Im Focus: Robuste Materialien in Schwingung versetzt

Kieler Physikteam beobachtet in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse

In der Physik werden sie zurzeit intensiv erforscht, in der Elektronik könnten sie ganz neue Funktionen ermöglichen: Sogenannte topologische Materialien...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Virtual Reality - Umgebung für‘s Homeoffice

09.07.2020 | Informationstechnologie

Sehbehinderte sollen durch Elektrostimulationen besser sehen

09.07.2020 | Medizintechnik

Internationale Studie: Wie lässt sich Gletscherschmelze genauer vorhersagen?

09.07.2020 | Studien Analysen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics