Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wachsen ohne Zellteilung: Heidelberger Wissenschaftler klären alternativen Zellzyklus auf

31.10.2011
Wenn Tiere oder Menschen größer werden, geschieht dies normalerweise durch viele aufeinanderfolgende Zellteilungen. Bei Pflanzen, aber auch bei vielen einfachen Tieren, gibt es eine alternative Strategie: Die Zellen verdoppeln ihr Erbgut und ihre übrigen Bestandteile und damit auch ihr Volumen, anschließend teilen sie sich jedoch nicht in zwei Tochterzellen. So entstehen nach mehreren solcher "Endozyklen" riesige Zellen. Wissenschaftler am Deutschen Krebsforschungszentrum und an der Universität Heidelberg haben nun aufgeklärt, wie diese so genannten "Endozyklen" gesteuert werden. Ihre Ergebnisse veröffentlichen sie heute in "Nature".

Gemeinsame Pressemitteilung des Deutschen Krebsforschungszentrums und der Universität Heidelberg

Endozyklen sind in der Natur weit verbreitet: Sowohl bei vielen Nicht-Wirbeltieren, wie Weichtieren, Insekten oder Krebsen, als auch bei Pflanzen sorgen sie für das Wachstum. Hochgerechnet entstehen durch Endozyklen rund 50% der gesamten Biomasse auf der Erde. Wirtschaftlich bedeutend könnte es sein, die Endozyklen von außen zu beeinflussen: Nur ein Zyklus mehr würde das Erntegewicht eines Getreidefeldes verdoppeln, ein Endozyklus weniger könnte eine Insekten-Schädlingsplage beherrschbar machen. Dennoch war diese Form des Zellzyklus im Gegensatz zur Zellteilung, der Mitose, bisher nur wenig erforscht und daher nicht vollständig verstanden.

Die Wissenschaftler um Bruce Edgar, der eine Brückenabteilung am Deutschen Krebsforschungszentrum und dem Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) im Rahmen der DKFZ-ZMBH Allianz leitet, fanden nun heraus, dass auch dieser Zellzyklus ganz ähnlichen Gesetzmäßigkeiten folgt wie die Mitose: Hier wie dort sorgt ein zyklischer Auf- und Abbau bestimmter Eiweiße dafür, dass die Verdoppelung des Erbguts und damit der übrigen Zellbestandteile in regelmäßigen Abständen eingeleitet wird und nach deren Abschluss wieder zum Stillstand kommt.

"Wir haben heraus gefunden, dass die beiden Faktoren E2F und CRL4 hier eine wichtige Rolle spielen", erklärt Erstautor Norman Zielke. "E2F leitet den Endozyklus ein, und wird anschließend von CRL4 zerstört. Daraufhin wird CRL4 inaktiv, und E2F kann sich langsam wieder anreichern. Ist seine Konzentration hoch genug, beginnt der Zyklus von vorne." Dabei gilt: Je schneller die E2F Konzentration den Schwellenwert erreicht, desto schneller startet der nächste Zyklus und desto schneller wächst die Zelle. Die Funktion von E2F ähnelt der Funktion der Zykline, welche die Zellteilung (Mitose) regulieren.

„Eine Reihe von Studien hat gezeigt, dass die Eiweiße E2F und CRL4 auch bei der normalen Zellteilung (Mitose) eine Rolle spielen“, erläutert Bruce Edgar die medizinische Bedeutung der Studie. „Treten hierbei Fehler auf, führt das zu schweren Schäden im Erbgut, daher spielen beide Faktoren vermutlich auch eine Rolle bei der Entstehung von Krebs“.

Ihre Untersuchungen führten die Wissenschaftler an der Taufliege Drosophila durch. Deren Speicheldrüsenzellen durchlaufen etwa zehn Endozyklen und wachsen dadurch auf das 1000-fache ihrer ursprünglichen Größe an. Auch beim Menschen gibt es einige Zellen, die Endozyklen durchlaufen: Herzmuskelzellen, bestimmte Blutzellen, Megakaryozyten, die wie der Name vermuten lässt, sehr groß sind, sowie die Zellen der Placenta, die den Embryo ernähren müssen. Ob auch hier die beiden Proteine E2F und CRL4 die Endozyklen kontrollieren, möchten Bruce Edgar und seine Kollegen nun herausfinden.

Norman Zielke, Kerry J. Kim, Vuong Tran, Shusaku T. Shibutani, Maria-Jose Bravo, Sabarish Nagarajan, Monique van Straaten, Brigitte Woods, George von Dassow, Carmen Rottig, Christian F. Lehner, Savraj Grewal, Robert J. Duronio, and Bruce A. Edgar: Control of Drosophila endocycles by E2F and CRL4Cdt2, DOI 10.1038/nature10579.

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 2.500 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Ansätze, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg

eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Das Zentrum wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Dr. Stefanie Seltmann | idw
Weitere Informationen:
http://www.dkfz.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics