Vorteilhafte Destabilisierung

Unsere Haar- und Hautfarbe wird von mehreren Melanintypen bestimmt, darunter Eumelanin, ein schwarzes unlösliches Biopolymer. Es kommt vornehmlich bei dunklen Phänotypen vor und ist daneben als weiches biokompatibles Nanomaterial von technischem Interesse.

Bisherige Studien wurden jedoch fast ausschließlich mit synthetischem Eumelanin durchgeführt. Italienische Forscher zeigen in der Zeitschrift Angewandte Chemie nun auf, warum natürliches Eumelanin dem künstlichen als Radikalfänger, Antioxidans und Lichtschutz deutlich überlegen ist.

Dank seiner ungewöhnlichen optoelektronischen, dielektrischen, metallbindenden und Radikalfänger-Eigenschaften könnte Eumelanin für eine Vielzahl technischer Anwendungen interessant sein, z.B. für elektronische Bauteile auf organischer Basis oder als Antioxidationsmittel für Kunststoffe. Kürzlich stellte sich jedoch heraus, dass sich synthetisches Eumelanin in seinen Eigenschaften ganz erheblich von natürlichem unterscheidet.

In den Pigmentzellen wird Eumelanin enzymatisch aus Tyrosin oder DOPA hergestellt. Ein wichtiger Zwischenschritt ist die Isomerisierung von Dopachrom zu 5,6-Dihydroxyindol-2-carbonsäure (DHICA). Bei der enzymfreien Synthese im Labor spaltet sich dabei, anders als in der Natur, spontan eine Carbonsäuregruppe ab, es entsteht 5,6-Dihydroxyindol (DHI). Während natürliche Eumelanine mehr als 50% von DHICA abgeleitete Bausteine enthalten, weisen synthetische hauptsächlich von DHI abgeleitete Bausteine auf.

Ein Team von der Universität Neapel und dem Nationalen Forschungsrat von Italien in Pozzuoli hat nun Melanine auf DHI- und DHICA-Basis hergestellt und verglichen. Es zeigte sich, dass Molekül-Struktur, Morphologie sowie optoelektronische und paramagnetische Eigenschaften sehr unterschiedlich sind. Während DHI-basierte Polymere als kleine rundliche Aggregate vorliegen, bilden sich bei der DHICA-Variante mikrometergroße Stäbchen aus länglichen Aggregaten. Das DHICA-Polymer ist ein wesentlich stärkerer Protonen-Donor und Radikal-Fänger als das DHI-Polymer.

Ursache ist die unterschiedliche Art der Verknüpfung der einzelnen Bausteine in den beiden Melanintypen, wie die Forscher um Marco d'Ischia belegten. Bei den DHI-Biopolymeren können sich die Doppelbindungs-Elektronen über das ganze Molekülgerüst frei bewegen (konjugierte Doppelbindungen). Dies hat einen stabilisierenden Effekt, die Moleküle sind flach und liegen als kompakte Stapel vor. Bei den DHICA-basierten Melaninen ist diese Konjugation zwischen den Bausteinen dagegen gehindert, was einen destabilisierenden Effekt hat und zu Monomer-artigem Verhalten sowie einer geringeren Aggregationsneigung führt. Paradoxerweise ist es gerade diese Destabilisierung, die DHICA-Melaninen ihre außergewöhnlich effizienten Antioxidanz-, Redox- und Lichtschutzeigenschaften verleiht – und sie so als schützende Hautpigmente prädestiniert.

Die Forscher zeigen sich optimistisch, dass DHICA-basierte Melanine als herausragende Radikalfänger auch in technischen Anwendungen den bisher getesteten DHI-Polymeren überlegen zeigen werden.

Angewandte Chemie: Presseinfo 41/2013

Autor: Marco d'Ischia, Università degli Studi di Napoli Federico II (Italy), https://www.docenti.unina.it/marco.d'ischia

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201305747

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Media Contact

Dr. Renate Hoer GDCh

Weitere Informationen:

http://presse.angewandte.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer