Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Proteinstruktur zur Behandlung der zystischen Fibrose

14.12.2017

Biochemiker der UZH haben mit Hilfe der Kryo-Elektronenmikroskopie die detaillierte Architektur des Chloridkanals TMEM16A ermittelt. Dieses Protein gilt als aussichtsreiches Ziel, um wirksame Medikamente zur Behandlung der zystischen Fibrose zu entwickeln.


Struktur des Kalzium-aktivierten Chloridkanals TMEM16A: Die Kenntnisse über Struktur und Funktionsweise ebnen den Weg, um Medikamente gegen die zystische Fibrose zu entwickeln.

Raimund Dutzler, UZH

Die zystische Fibrose ist eine schwere Erbkrankheit der Lunge, für die es bisher noch keine Heilung gibt. Die Ursache der Krankheit ist eine Fehlfunktion des Chloridkanals CFTR. Diese verhindert in bestimmten Körperzellen die Sekretion von Chlorid, was die Schleimschicht in der Lunge austrocknet. Ein vielversprechender Therapieansatz beruht darin, einen alternativen Ionentransporter – den Kalzium-aktivierten Chloridkanal TMEM16A – zu aktivieren. Dieser befindet sich im selben Gewebe und könnte den Wasseraustausch von den Zellen zur Schleimschicht wiederherstellen. TMEM16A gehört zu einer Proteinfamilie, deren Mitglieder entweder als Ionenkanäle negativ geladene Chloridionen oder als Skramblasen Membranlipide durch die Zellmembran schleusen.

Struktur des Chloridkanals aufgeklärt

Bekannt aus früheren Arbeiten war bisher erst die Struktur einer TMEM16-Skramblase, die als Lipidtransporter eine wichtige Rolle bei der Blutgerinnung spielt. Nun haben Forschende am Biochemischen Institut erstmals die Architektur des Chloridkanals TMEM16A entschlüsselt. Das Team unter der Leitung von UZH-Professor Raimund Dutzler verwendete dazu die Kryo-Elektronenmikroskopie (Kryo-EM). Die Entwickler dieser Technologie, mit der sich die Struktur von Proteinen detailliert aufklären lässt, wurden kürzlich mit dem Chemie-Nobelpreis 2017 ausgezeichnet. «Der molekulare Aufbau des Membranproteins ist für die gezielte Entwicklung von Medikamenten zur Behandlung der zystischen Fibrose von grosser Bedeutung», betont Dutzler.

Neuer Aktivierungsmechanismus entdeckt

Der Chloridkanal TMEM16A kommt in verschiedenen Organen des Körpers vor und spielt eine wichtige Rolle bei der Sekretion von Chlorid in der Lunge, der Kontraktion der glatten Muskulatur und der Schmerzwahrnehmung. Wie sich dessen Struktur von eng verwandten Mitgliedern der TMEM16-Familie unterscheidet, und wie er durch die Bindung von Kalzium aktiviert wird, konnte nun mit Hilfe von Kryo-EM und elektrophysiologischen Methoden ermittelt werden. Während die generelle Architektur des Kanals den Skramblasen ähnlich ist, gibt es ausgeprägte Unterschiede in der Porenregion, die sich in beiden Untereinheiten des Proteins befindet. Skramblasen haben an dieser Stelle eine der Membran zugewandte polare Furche, an der die geladenen Kopfgruppen der Lipide durch die Membran geschleust werden. Im Gegensatz dazu bildet die selbe Region in TMEM16A einen vom Protein umschlossenen sanduhrförmigen Kanal, der in Abwesenheit von Kalzium geschlossen ist. Die Bindung von positiv geladenen Kalziumionen in unmittelbarer Nähe öffnet den Kanal und erlaubt negativ geladenen Chloridionen durch die Membran zu fliessen. «Dieser Aktivierungsmechanismus ist einzigartig, da die gebundenen Kalziumionen direkt die Struktur und Elektrostatik des Kanals beeinflussen», erklärt Erstautorin Cristina Paulino.

Grundlage für neue Therapien

Die Resultate über die Struktur und das Funktionieren von TMEM16A bilden die Basis für das Verständnis dieser wichtigen Proteinklasse und ebnen einen vielversprechenden Weg für die Entwicklung von Medikamenten gegen die zystische Fibrose. «Falls zukünftig Substanzen gefunden werden, die zur Aktivierung des Kanals führen, könnte TMEM16A den Defekt in der Chloridsekretion im Lungengewebe beheben», sagt Raimund Dutzler.

Literatur:
Cristina Paulino, Valeria Kalienkova, Andy K. M. Lam, Yvonne Neldner and Raimund Dutzler. Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM. Nature. 13 December 2017. DOI: 10.1038/nature24652

Projektfinanzierung
Das Projekt wurde mit Mitteln des European Research Council (ERC) und eines Forschungskredits der Universität Zürich unterstützt. Die Kryo-EM-Daten wurden mit Elektronenmikroskopen des Zentrums für Mikroskopie und Molekulare Bildgebung der UZH aufgenommen, die mit massgeblicher Unterstützung der Mäxi-Siftung beschafft wurden.

Kontakt:
Prof. Dr. Raimund Dutzler
Biochemisches Institut
Universität Zürich
Tel. +41 44 635 65 50
E-Mail: dutzler@bioc.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/de/medienmitteilungen/2017/Chloridkanal-zystische-Fibros...

Kurt Bodenmüller | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues aus der Schaltzentrale
18.07.2018 | Karl-Franzens-Universität Graz

nachricht Chemische Waffe durch laterale Gen-Übertragung schützt Wollkäfer gegen schädliche Pilze
18.07.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics