Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Stroh zum Energieträger: Eintopf-Rezept für Wasserstoffgewinnung

24.05.2018

„Abfall wird zu Energie“ titelte das renommierte Fachblatt nature catalysis in seiner Mai-Ausgabe: „Waste turned into energy“. Die Geschichte dahinter schrieben Chemiker des Leibniz-Instituts für Katalyse (LIKAT) in Rostock und der X’ian Jiatong Universität in China. Sie stellen eine katalytische Reaktion für die Gewinnung von Wasserstoff aus Stroh, Holzschnitzen und anderen pflanzlichen Abfällen vor. Der Pfiff ist dabei die Kombination zweier unterschiedlicher chemischer Verfahren in einem einzigen Reaktionsgefäß. – „One-pot“ sagen die Engländer dazu, und auch im Deutschen gibt es einen Begriff für dafür: die Eintopf-Reaktion.

Was die Chemiker hier in bilateraler Zusammenarbeit vorlegen, ist gewissermaßen das Rezept für die Hauptzutat in einem Menü, an dessen Zubereitung Labors in aller Welt seit Jahren arbeiten: einen Mix unterschiedlicher Verfahren für die Energiegewinnung aus erneuerbaren Rohstoffen und für die Speicherung entsprechender Energieträger.


Wasserstoffentwicklung im Labor

LIKAT nordlicht

Wind und Sonne sind für die Stromerzeugung ja nicht jederzeit verfügbar. Biomasse fällt zyklisch an und ist auch räumlich recht ungleich verbreitet.

Eine Lösung wäre, die Energie, die diskontinuierlich aus ihnen gewonnen wird, zu speichern.
Nach Ansicht von Henrik Junge, Mitautor des nature-catalysis-Artikels, kommt dabei vor allem die chemische Speicherung in Frage. Und Wasserstoff steht als Option ganz oben.

H2-Hype und Ameisensäure

Bereits 2002 hatte der US-amerikanische Ökonom und Soziologe Jeremy Rifkin das Konzept einer Wasserstoffwirtschaft skizziert. H2 soll fossile Brennstoffe ersetzen, deren steigende Nutzung für die globale Erwärmung verantwortlich gemacht wird.

Das Europäische Parlament forderte 2007 in einer Erklärung, bis 2025 eine umweltfreundliche Wasserstoffwirtschaft samt Infrastruktur zu schaffen. In den Forschungszentren der Welt setzte ein regelrechter H2-Hype ein, sagt Henrik Junge. Für die Labors gibt es tatsächlich viel zu tun.

Als Gas beansprucht Wasserstoff ein enormes Volumen. Herkömmlich speichert man es deshalb als Flüssigkeit bei -253 Grad Celsius oder unter hohem Druck. Effektiver ist es, H2 chemisch zu speichern, etwa in Ameisensäure. Deren Moleküle verwahren den Wasserstoff sozusagen ohne Kühlung und Druck bis zu seinem Gebrauch, z.B. in Brennstoffzellen für eine nachhaltige Stromerzeugung.

Eine offene Frage war lange Zeit, wie sich die Ameisensäure ebenso effektiv wieder in H2 umwandeln lässt. Das funktionierte bis dahin nur bei höheren Temperaturen, was sich negativ auf die Energiebilanz auswirkte, und unter Bildung von Kohlenmonoxid, das nicht nur für Menschen, sondern auch für Brennstoffzellen giftig ist.

Eine Antwort kam 2008 aus dem LIKAT, dort gelang es einem Team, H2 bei Raumtemperatur aus Ameisensäure katalytisch freizusetzen. Dies lief unter Leitung von LIKAT-Direktor Matthias Beller und Arbeitsgruppenleiter Henrik Junge. Seither ist die Ameisensäure im Zusammenhang mit der Wasserstoffwirtschaft weltweit zu einem heißen Thema geworden, wie Junge sagt. Labors in der Schweiz, in Japan und in den Niederlanden arbeiten daran. Die Kernkompetenz dafür hat das LIKAT.

Mit Stroh und Zigarettenfiltern

Der Trick des aktuellen Verfahrens zur Herstellung von Wasserstoff liegt in der Idee, zunächst einmal Ameisensäure herzustellen. Eine treibende Kraft an diesem Projekt ist Yang Li, die in Junges Gruppe als Postdoktorandin arbeitete. Inspiriert von den Arbeiten am LIKAT befasste sie sich zunächst mit der chemischen Aufspaltung von Biomasse. Sie experimentierte u.a. mit Stroh und Lignocellulose (Holzschnitze), mit Bambus und Schilf.

Nachdem Yang Li im ersten Schritt vom Stroh zur Ameisensäure gelangt war, musste sie nun im zweiten Schritt H2 gewinnen.
Die Herausforderung bestand nach Henrik Junges Worten darin, beide Schritte in einem einzigen Reaktionsgefäß ablaufen zu lassen. Es handelt sich um zwei verschiedene Verfahren mit zwei unterschiedlichen Katalysatoren, die sich in ein und derselben Reaktionslösung normalerweise ins Gehege kommen.

Es galt hier das richtige Paar zu finden, das friedlich koexistiert, denn alle Zutaten – etwa Stroh, Lösungsmittel, Katalysatoren – werden gemeinsam in den Topf gegeben. Eben wie beim traditionellen Eintopf. Dass dies tatsächlich gelang, hat nature catalysis veranlasst, die Arbeit so prominent zu präsentieren.

Dezentrale Anwendung

Der Test geeigneter Katalysatoren und das „Feintuning“ des Verfahrens liefen schon am neuen Wirkungsort von Yang Li, an der Universität in X’ian. Dort stand ihr ein weiterer LIKAT-Forscher zur Seite. Und auch Mathias Beller und Henrik Junge flogen nach X’ian, um die junge Chemikerin mit Erfahrung und Ideen zu unterstützen.

Nun mailte ihnen die chinesische Kollegin, der nature-catalysis-Artikel sei momentan der Renner in der wissenschaftlichen Community ihres Landes, die stark in den sozialen Medien vernetzt ist.

Das One-pot-Vorgehen macht das Verfahren besonders attraktiv für eine dezentrale Anwendung in der Landwirtschaft. Gemeinsam mit Partnern lassen sich damit Pilotanlagen entwickeln, in denen die Aufbereitung von Biomasse und die H2-Produktion gekoppelt sind. – Ähnlich, wie dies für Windkraft schon existiert, und zwar durch Kombination mit der Elektrolyse, die „überschüssigen“ Strom, für den momentan kein Bedarf da ist, in Wasserstoff umwandelt.

Originalarbeit in nature catalysis: DOI: 10.1038/s41929-018-0062-0

Dr. Barbara Heller | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Experimentelles Tumormodell offenbart neue Ansätze für die Immuntherapie bei Glioblastom-Patienten
18.02.2020 | Universitätsmedizin Mannheim

nachricht Kleber für gebrochene Herzen
18.02.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics