Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Sortieren bunter Tröpfchen

05.04.2019

Die Tropfen-Mikrofluidik bietet viele Vorteile: Mit dieser Methode können Mikroorganismen zahlreich, schnell und mit wenig Platzbedarf kultiviert werden. Ihre wesentliche Schwäche lag bisher jedoch darin, dass die verwendeten Tröpfchen nicht unterscheidbar waren. Mithilfe von kleinen Kunststoffkügelchen und Künstlicher Intelligenz haben Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Naturstoff-Forschung und Infektionsbiologie und der Friedrich-Schiller-Universität Jena eine Methode entwickelt, dies zu ändern. Ihre interdisziplinäre Studie dazu hat das Team um Dr. Martin Roth und Prof. Dr. Marc Thilo Figge im Fachjournal Small veröffentlicht.

Die Tropfen-Mikrofluidik ist ein Meilenstein in der Kultivierung und Erforschung von Mikroorganismen. Ihr Prinzip beruht auf der Unvermischbarkeit zweier Flüssigkeiten.


Die bunten Farbkügelchen sind gemeinsam mit (hier nicht sichtbaren) Bakterien in verschiedenen Kombinationen in die Tropfen eingeschlossen. So können diese unterschieden und sortiert werden.

Oksana Shvydkiv, Leibniz-HKI

Eine ölige und eine wässrige Flüssigkeit werden in einem winzigen Kanalsystem miteinander in Kontakt gebracht. Dabei umschließt die ölige Flüssigkeit die wässrige und es bilden sich kleinste Tröpfchen von etwa 200 Pikoliter Volumen.

Mithilfe eines Helfermoleküls wird eine erneute Verschmelzung der einzelnen Tröpfchen verhindert. So dienen die Tröpfchen als winzige Bioreaktoren, die jeweils mit einer Bakterienzelle beimpft werden können.

So erhält man große Mengen an Reinkulturen für die Suche nach neuen Mikroorganismen oder Wirkstoffen. Neben dem geringen Platzverbrauch ist diese Methode kostengünstig und funktioniert im Hochdurchsatz – also sehr schnell. Dadurch ist die Mikrofluidik in der Lage etwa die Suche nach neuen Antibiotika zu beschleunigen.

„Die Mikrofluidik hat viele Vorteile“, sagt Dr. Miguel Tovar vom Biotechnikum des Leibniz-HKI. „Aber bei mitunter wochenlanger Kultivierung kommen die Tropfen durcheinander, sodass wir keinen Überblick mehr haben, welches Bakterium in welchem Tropfen ist“, so Tovar weiter.

Um dieses Problem zu lösen, zogen sie die Expertise der Forschungsgruppe Angewandte Systembiologie hinzu, die mithilfe Künstlicher Intelligenz ein System entwickelte, das die Tröpfchen nach Bakterienart oder experimentellen Bedingungen sortieren kann.

„Dazu haben wir zu den Tropfen kleine Kunststoffkügelchen in verschiedenen Farben und Kombinationen hinzugegeben“, erklärt Dr. Oksana Shvydkiv, verantwortlich für die Durchführung dieser Experimente am Biotechnikum. Diese in der Fachsprache Beads genannten Kügelchen codieren die Tröpfchen und deren Inhalt.

„Eine Kamera erstellt ein Bild von jedem Tropfen, der durch den Kanal wandert. Anhand dieses Bildes analysiert ein Computer die Farben, um die Tröpfchen danach identifizieren und sortieren zu können“, fügt Dr. Carl-Magnus Svensson von der Forschungsgruppe Angewandte Systembiologie hinzu.

Die Wissenschaftlerinnen und Wissenschaftler führten zwei Experimente durch, um das Konzept zu testen und zu bestätigen. Im ersten Experiment fügten sie den Tropfen verschieden hohe Konzentrationen an Antibiotika hinzu und sortierten die Tröpfchen farblich kodiert.

Dabei wurde immer eine Farbe oder Farbkombination für eine bestimmte Antibiotikadosierung verwendet. Das Ergebnis bestätigte die Annahme: Mithilfe der Mikrofluidik und der Farbcodes der Kügelchen können solche und vergleichbare Tests in Zukunft parallel durchgeführt werden.

Das zweite Experiment führte das Team an einem antibiotikaresistenten Keim durch. Dabei testeten sie neun verschiedene Antibiotika. Von diesen erwiesen sich nur drei als wirksam. Wieder hatte die Zuordnung zu Gruppen nach Farbcodes funktioniert.

„Es ist für uns als Theoriegruppe sehr erfreulich, dass wir unsere Kollegen im Biotechnikum unterstützen können“, sagt Figge. Aktuell arbeiten er und seine Abteilung daran, verschiedene Fehlerquellen auszumerzen.

In wenigen Fällen erkennt der Computer etwa die Farben der Beads nicht exakt und ordnet sie deshalb falsch zu. Auch die Anzahl an Farbkombinationen ist aus diesem Grund begrenzt. „Dennoch denke ich, dass wir etwa hundert verschiedene Farbkombinationen anwenden können“, sagt Svensson.

„Mikrofluidische Systeme erhöhen die Trefferzahl bei mikrobiologischen Suchverfahren, da sie in kurzer Zeit enorme Probenmengen durchsetzen können. Dies gelingt jedoch nur mit ausgefeilten optischen Technologien und einer sehr leistungsfähigen Datenverarbeitung.

Im Leibniz ScienceCampus InfectoOptics sind all diese Kompetenzen vereinigt. Wir leisten damit einen wichtigen Beitrag für den neuen Jenaer Exzellenzcluster Balance of the Microverse. Dieser widmet sich der Dynamik und Regulation komplexer Mikrobengemeinschaften, den sogenannten Mikrobiomen.

Die Mikrofluidik wird dazu beitragen, solche Mikrobiome und ihren Beitrag zur Gesundheit von Menschen, Tieren und Pflanzen besser zu verstehen“, so Figge, der die Professur für Angewandte Systembiologie an der Friedrich-Schiller-Universität Jena innehat.

Wissenschaftliche Ansprechpartner:

Marc Thilo Figge

Originalpublikation:

Svensson CM, Shvydkiv O, Dietrich S, Mahler L, Weber T, Choudhary M, Tovar M, Figge MT, Roth M (2019) Coding of experimental conditions in microfluidic droplet assays using colored beads and machine learning supported image analysis. Small 15(4), e1802384.

Dr. Michael Ramm | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Weg entdeckt, um Killerzellen «umzuprogrammieren»
19.11.2019 | Universität Bern

nachricht Tiefseebakterien ernähren sich wie ihre Nachbarn
19.11.2019 | Max-Planck-Institut für Marine Mikrobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Im Focus: Der direkte Weg zur Phosphorverbindung: Regensburger Chemiker entwickeln Katalysemethode

Wissenschaftler finden effizientere und umweltfreundlichere Methode, um Produkte ohne Zwischenstufen aus weißem Phosphor herzustellen.

Pflanzenschutzmittel, Dünger, Extraktions- oder Schmiermittel – Phosphorverbindungen sind aus vielen Mitteln für den Alltag und die Industrie nicht...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Neu entwickeltes Glas ist biegsam

Eine internationale Forschungsgruppe mit Beteiligung der Österreichischen Akademie der Wissenschaften hat ein Glasmaterial entwickelt, das sich bei Raumtemperatur bruchfrei verformen lässt. Das berichtet das Team aktuell in "Science". Das extrem harte und zugleich leichte Material verspricht ein großes Anwendungspotential – von Smartphone-Displays bis hin zum Maschinenbau.

Gläser sind ein wesentlicher Bestandteil der modernen Welt. Dabei handelt es sich im Alltag meist um sauerstoffhaltige Gläser, wie sie etwa für Fenster und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Weg entdeckt, um Killerzellen «umzuprogrammieren»

19.11.2019 | Biowissenschaften Chemie

Supereffiziente Flügel heben ab

19.11.2019 | Materialwissenschaften

Energiesysteme neu denken - Lastmanagement mit Blockheizkraftwerk

19.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics