Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Virenvermehrung in 3D

13.12.2019

Vaccinia-Viren dienen als Impfstoff gegen menschliche Pockenerkrankungen und als Basis neuer Krebstherapien. Zwei Studien liefern jetzt faszinierende Einblicke in deren ungewöhnliche Vermehrungsstrategie auf atomarer Ebene.

Damit Viren sich vermehren können, benötigen sie in der Regel die Unterstützung der von ihnen befallenen Zellen. Nur in deren Zellkern finden sie die Maschinen, Enzyme und Bausteine, mit deren Hilfe sie ihr genetisches Material vervielfachen können, bevor sie weitere Zellen infizieren.


Struktur der RNA-Polymerase von Vaccinia-Viren

Clemens Grimm


Struktur der RNA-Polymerase von Vaccinia-Viren

Clemens Grimm

Doch nicht alle Viren finden den Weg in den Zellkern. Einige verbleiben außerhalb des Zellkerns im sogenannten Zytoplasma und müssen so aus eigener Kraft heraus in der Lage sein, ihr Erbgut zu verdoppeln.

Den dafür notwendigen „Maschinenpark“ müssen sie selbst mitbringen. Eine wesentliche Rolle übernimmt dabei eine spezielle Enzym-Maschine, kombiniert mit diversen Untereinheiten: die RNA-Polymerase.

Dieser Komplex liest die genetische Information vom Erbgut des Virus ab und übersetzt sie in die mRNA, ein langes Molekül, das als Blaupause für die im Erbgut kodierten Proteine dient.

Publikation in Cell

Wissenschaftlern vom Biozentrum der Julius-Maximilians-Universität Würzburg (JMU) und vom Max-Planck-Institut für biophysikalische Chemie (MPI-BPC) in Göttingen ist es jetzt erstmals gelungen, die Struktur dieses Enzymkomplexes aus Pockenviren dreidimensional und in atomarer Auflösung darzustellen.

Sie haben dabei mit dem Vaccinia-Virus gearbeitet – einem DNA-Virus, das zur Familie der Pockenviren gehört, das aber für den Menschen völlig harmlos ist. Dieses dient nicht nur als Grundlage aller Pocken-Impfstoffe, es wird auch in der sogenannten onkolytischen Virotherapie zur Bekämpfung von Krebserkrankungen erprobt.

Verantwortlich für die strukturbiologischen Arbeiten sind Utz Fischer, Inhaber des Lehrstuhls für Biochemie I der JMU Würzburg, und Patrick Cramer, Direktor und Leiter der Abteilung Molekularbiologie am MPI-BPC. In zwei zeitgleich erscheinenden Veröffentlichungen in der Fachzeitschrift Cell stellen sie jetzt die Ergebnisse ihrer Zusammenarbeit vor.

Eine molekulare Klammer, die alles zusammenhält

„Die RNA-Polymerase des Vaccinia-Virus existiert im Wesentlichen in zwei Erscheinungsformen: dem eigentlichen Kernenzym und einem noch größeren Komplex, der dank zusätzlich hinzugefügter Untereinheiten über weitere, spezielle Funktionalitäten verfügt“, erklärt Fischer.

Das Kernenzym gleicht in weiten Teilen einem anderen bekannten Enzym, welches seit Längerem im Fokus der Abteilung von Patrick Cramer steht: der RNA-Polymerase II. Diese ist normalerweise im Zellkern zu finden, wo sie ebenfalls dafür zuständig ist, die Information aus dem Erbgut abzulesen und in mRNA zu übersetzen. Dieser Vorgang wird Transkription genannt.

Den zweiten Komplex der Vaccinia-RNA-Polymerase bezeichnet Fischer als „Alleskönner“. Zusammengesetzt aus zahlreichen Untereinheiten ist er dafür verantwortlich, für das Virus den gesamten Transkriptionsprozess durchzuführen und damit dessen Vermehrung zu ermöglichen.

Zusammengehalten wird der Komplex von einem Molekül, welches das Virus aus seiner Wirtszelle entwendet: einer tRNA. Diese Art von Molekülen spielt normalerweise keine Rolle in der Transkription, sondern liefert die Aminosäure-Bausteine für die Proteinherstellung. „Ohne die Mitwirkung der Wirts-tRNA würde diese riesige Maschinerie mit all ihren spezifischen Untereinheiten auseinanderfallen“, so der Strukturbiologe Clemens Grimm, der zusammen mit Hauke Hillen vom MPI-BPC die Strukturanalyse durchführte.

Die Forscher vermuten, dass der tRNA-Strang neben seiner verbindenden Funktion noch eine weitere wichtige Aufgabe übernimmt. „Diese tRNA kann nur mit Glutamin beladen werden, einer Aminosäure, die nicht nur für die Herstellung von Proteinen, sondern auch als Energie- und Stickstoffquelle der Zelle notwendig ist“, erklärt Aladar Szalay, Mitautor der Studie und Leiter des Cancer Therapy Research Center (CTRC) an der JMU.

Da das Virus für seine Replikation auf Stickstoff angewiesen ist, könnte die tRNA als Sensor dienen, der dem Virus Auskunft über den aktuellen Stickstoffgehalt in der Zelle gibt. Sinkt dieser unter einen bestimmten Wert, könnte dies für das Virus das Signal sein, die Zelle möglichst bald zu verlassen. Das ist allerdings bisher nur eine Hypothese.

Viren-Vermehrung im Film

Um der Funktionsweise der viralen RNA-Polymerase auf die Spur zu kommen, ermittelten die Forscher ihre dreidimensionale Struktur zusätzlich während unterschiedlicher Schritte der Transkription. Mit diesen neuen Erkenntnissen ist es nun möglich, den gesamten Prozess der Viren-Vermehrung auch strukturbiologisch nachzuvollziehen.

Wie in einem Film lässt sich nachverfolgen, wie diese „molekulare Maschine“ auf atomarer Ebene funktioniert und wie die einzelnen Abläufe choreografiert sind. „Besonders erstaunlich ist, wie sich die Bausteine der Maschine nach dem Start der Transkription neu anordnen, um die Synthese des RNA-Produkts voranzutreiben – dieser Komplex ist wirklich sehr dynamisch“, erklärt Hillen.

Um diese Einsichten zu erhalten, mussten Biochemiker und Strukturbiologen eng zusammenarbeiten: Die Biochemikerinnen Julia Bartuli und Kristina Bedenk an der JMU haben in einem jahrelangen Prozess den Polymerase-Komplex mit all seinen interagierenden Komponenten aufgereinigt und biochemisch charakterisiert. Die Strukturbiologen Grimm und Hillen waren anschließend dafür zuständig, die dreidimensionalen Strukturen zu ermitteln.

Ein Supermikroskop liefert die nötigen Daten

Die entsprechenden Daten erhielten die Forscher von einem Gerät, das die Strukturanalyse in den vergangenen Jahren revolutioniert hat: einem Kryo-Elektronenmikroskop der neuesten Generation, wie es sowohl an der JMU als auch am MPI-BPC in Betrieb ist. Mit einer Spannung von 300.000 Volt schießt es Elektronen durch die auf minus 180 Grad Celsius gekühlten Proben und liefert so Bilder mit einer Auflösung, die sich in der Größenordnung von Atomen bewegt. Das Mikroskop macht es möglich, biologische Moleküle und Komplexe zu untersuchen und deren dreidimensionale Struktur zu rekonstruieren.

Rund sechs Monate mussten Grimm und Hillen an ihren Computern tüfteln, bis sie aus mehreren Terabyte Daten räumliche Modelle der Polymerase-Komplexe entwickelt hatten. „Ohne die neuen Kryo-Elektronenmikroskope an unseren Institutionen und die hervorragende Kooperation zwischen den beiden Gruppen wäre das nicht so schnell und in dieser Qualität möglich gewesen“, sagt Grimm. Mit einer 3D-Brille kann nun jeder den Komplex sich räumlich vor Augen führen, beliebig drehen und in seine Untereinheiten zerlegen.

Die neuen Erkenntnisse bieten nach Ansicht der Wissenschaftler jetzt unter anderem die Möglichkeit, Inhibitoren und Modulatoren zu entwickeln, um auf den viralen Vermehrungszyklus Einfluss zu nehmen. Weil die Vaccinia-Vermehrung im Zytoplasma abläuft, versprechen sie sich davon auch ein therapeutisches Potenzial. Aktuell laufen weltweit Studien, bei denen Vaccinia-Viren im Kampf gegen Krebs zum Einsatz kommen. Die Firma Genelux, die ebenfalls an der Studie beteiligt war, hat in Tierversuchen und an Patienten bereits das Potenzial speziell optimierter Vaccinia-Viren bewiesen, Tumore zu verkleinern und kleinste Metastasen aufzuspüren. Zusätzlich erwarten die Forscher neue Einblicke in die Funktionsweise des verwandten RNA-Polymerase II-Enzymkomplexes aus dem Zellkern. Was diesen betrifft, seien auch noch etliche Aspekte ungeklärt.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Utz Fischer, Lehrstuhl für Biochemie, Julius-Maximilians-Universität Würzburg,
T: +49 931 31-84029, utz.fischer@biozentrum.uni-wuerzburg.de

Prof. Dr. Patrick Cramer, Max-Planck-Institut für biophysikalische Chemie, Göttingen
T: +49 551 201-2800, pcramer@mpibpc.mpg.de

Originalpublikation:

„Structural basis of poxvirus transcription: Vaccinia RNA polymerase complexes“, C. Grimm, H.S. Hillen, K. Bedenk, J. Bartuli, S.Neyer, Q. Zhang, A. Hüttenhofer, M. Erlach, C. Dienemann, A. Schlosser, H. Urlaub, B. Böttcher, A. Szalay, P. Cramer and U. Fischer. Cell 179 (2019) pp., 1537-1550, DOI: 10.1016/j.cell.2019.11.024

„Structural basis of poxvirus transcription: transcribing and capping Vaccinia complexes“, H.S. Hillen, J. Bartuli, C. Grimm, C. Dienemann, K. Bedenk, A. Szalay, U. Fischer and P. Cramer: Cell 179 (2019) pp., 1525-1536, DOI: 10.1016/j.cell.2019.11.023

Weitere Informationen:

Ein Video, das den Enzymkomplex in seinen Details zeigt, ist hier zu sehen: https://youtu.be/WgfOTFv-22E

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de
https://www.uni-wuerzburg.de/aktuelles/pressemitteilungen/single/news/virenvermehrung-in-3d/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinfunktionen - Ein Lichtblitz genügt
21.01.2020 | Ludwig-Maximilians-Universität München

nachricht DKMS-Studie zum Erfolg von Stammzelltransplantationen
21.01.2020 | DKMS - Medizin & Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: DKMS-Studie zum Erfolg von Stammzelltransplantationen

Den möglichen Einfluss von Killerzell-Immunoglobulin-ähnlichen Rezeptoren (KIR) auf den Erfolg von Stammzelltransplantationen hat jetzt ein interdisziplinäres Forscherteam der DKMS untersucht. Das Ergebnis: Bei 2222 Patient-Spender-Paaren mit bestimmten KIR-HLA-Kombinationen konnten die Wissenschaftler keine signifikanten Auswirkungen feststellen. Jetzt wollen die Forscher weitere KIR-HLA-Kombinationen in den Blick nehmen – denn dieser Forschungsansatz könnte künftig Leben retten.

Die DKMS ist bekannt als Stammzellspenderdatei, die zum Ziel hat, Blutkrebspatienten eine zweite Chance auf Leben zu ermöglichen. Auch auf der...

Im Focus: Gendefekt bei Zellbaustein Aktin sorgt für massive Entwicklungsstörungen

Europäische Union fördert Forschungsprojekt „PredActin“ mit 1,2 Millionen Euro

Aktin ist ein wichtiges Strukturprotein in unserem Körper. Als Hauptbestandteil des Zellgerüstes sorgt es etwa dafür, dass unsere Zellen eine stabile Form...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

KIT im Rathaus: Städte und Wetterextreme

21.01.2020 | Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Differenzierte Bildgebung für bessere Diagnosen bei Brustkrebs

21.01.2020 | Medizin Gesundheit

Kurilen-Kamchatka-Graben im Pazifischen Ozean gehört nicht mehr zu den „10.000ern“

21.01.2020 | Geowissenschaften

Proteinfunktionen - Ein Lichtblitz genügt

21.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics