Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Viren statt Antibiotika: 3D Struktur von Phagen in atomarer Auflösung rückt durch neue Methode näher

03.07.2017

Im Kampf gegen Antibiotikaresistenzen sind Phagen in den Fokus der Forschung geraten. Die bakterienfressenden Viren haben sich in Experimenten bereits als wirksam gegen multiresistente Bakterien erwiesen. Unbekannt ist jedoch, wie die kleinen Helfer auf atomarer Ebene aufgebaut sind. Forscher vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin konnten jetzt eine neue Methode entwickeln, mit der sich die komplexe Struktur bis ins atomare Detail aufklären lässt. Die Arbeit basiert auf einer Weiterentwicklung der Festkörper-NMR und wurde in den Fachmagazinen „Angewandte Chemie“* und „Nature Protocols“** publiziert.

Die WHO hat Antibiotikaresistenzen längst zu einer globalen Gesundheitskrise erklärt und zuletzt im März eine Liste mit Problemkeimen veröffentlicht, für die am dringendsten neue Antibiotika benötigt werden. Doch die Suche nach neuen Antibiotika gestaltet sich schwierig: Seit über 40 Jahren gab es keine wesentlichen Fortschritte in der Entwicklung.


Künstlerische Darstellung von Phagen (grün und gelb), die ein Bakterium (blau) angreifen.

Barth van Rossum, FMP

Forscher suchen darum verstärkt nach therapeutischen Alternativen. Eine solche Alternative könnten Phagen darstellen. Das sind natürlich vorkommende Viren, die bestimmte Bakterien angreifen und fressen und darum auch „Bakteriophagen“ heißen (altgriechisch φαγεῖν phageín ‚fressen‘).

Da es für jedes Bakterium spezifische Phagen gibt, scheinen sie sogar gezielter einsetzbar zu sein als Antibiotika, die immer auch „gute“ Bakterien töten. In Osteuropa wurde bereits viel mit Bakteriophagen experimentiert, und in den USA werden sie inzwischen genetisch so manipuliert, dass sie in der Lage sind, Mäuse von Infektionen mit multiresistenten Keimen zu heilen.

Der genaue Aufbau der Phagen ist bislang nicht komplett bekannt. Dabei wäre es im Zuge der aktuellen Therapieentwicklung enorm wichtig zu wissen, wie sie genau operieren und wie ihre 3D Struktur im atomaren Detail aussieht. „Phagen sind von der Natur über Millionen von Jahren optimierte Nanomaschinen. Sie bestehen aus vielen Komponenten, die sich zu einer komplexen Architektur zusammenfügen.“, erklärt Prof. Dr. Adam Lange vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP).

Lange und seinem Team ist jetzt ein methodischer Meilenstein gelungen: Die Forscher haben Festkörper-NMR-Methoden (Kernspinresonanzspektroskopie) so weiterentwickelt, dass sich damit die Struktur der Phagen bis ins atomare Detail aufklären lässt. Etwa ein Jahr, schätzt Lange, wird er brauchen, um die komplexe Struktur der Phagen aufzuklären. „Damit können wir im Rahmen der Grundlagenforschung einen wichtigen Beitrag zur Phagentherapie leisten.“

Die neue Methode kann auch auf andere wichtige Systeme angewendet werden. Damit Labore auf der ganzen Welt darauf zurückgreifen können, haben die Forscher zusätzlich zu der Arbeit in „Angewandte Chemie“* ein ausführliches Protokoll in „Nature Protocols“** publiziert.

„Bakteriophagen werden aufgrund der Antibiotikaresistenz vieler pathogener Bakterienstämme als alternativer therapeutischer Ansatz immer wichtiger“, schließt Lange, der einer der führenden Köpfe auf dem Gebiet der NMR-basierten Sichtbarmachung von Proteinstrukturen ist. „Darum werden wir unsere technische Weiterentwicklung jetzt nutzen, um deren komplexe Struktur so schnell wie möglich aufzuklären.“

*M. Zinke, P. Fricke, C. Samson, S. Hwang, J. S. Wall, S. Lange, S. Zinn-Justin, and A. Lange, Bacteriophage tail tube assembly studied by proton-detected 4D solid-state NMR, Angewandte Chemie – International Edition, in press.

dx.doi.org/10.1002/anie.201706060

**P. Fricke, V. Chevelkov, M. Zinke, K. Giller, S. Becker, and A. Lange, Backbone assignment of perdeuterated proteins by solid-state NMR using proton-detection and ultrafast magic-angle spinning, Nature Protocols, in press.

http://dx.doi.org/10.1038/nprot.2016.190

Kontakt:

Prof. Dr. Adam Lange
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
alange@fmp-berlin.de
Tel.: 0049 30 94793-191

Öffentlichkeitsarbeit:

Silke Oßwald
Tel.: +49-30-94793-104
E-Mail: osswald(at)fmp-berlin.de

Das Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.900 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Silke Oßwald | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fmp-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wenn für Fischlarven die Nacht zum Tag wird
18.01.2019 | Universität Siegen

nachricht Handgestrickte Moleküle
18.01.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zeitwirtschafts- und Einsatzplanungsprozesse effizient und transparent gestalten mit dem Workforce Management System der GFOS

18.01.2019 | Unternehmensmeldung

Der Schlaue Klaus erlaubt keine Fehler

18.01.2019 | Informationstechnologie

Neues Verfahren zur Grundwassersanierung: Mit Eisenoxid gegen hochgiftige Stoffe

18.01.2019 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics